Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Parasitol ; 262: 108773, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723845

ABSTRACT

Giardiasis is a prevalent parasitic diarrheal disease caused by Giardia lamblia, affecting people worldwide. Recently, the availability of several drugs for its treatment has highlighted issues such as multidrug resistance, limited effectiveness and undesirable side effects. Therefore, it is necessary to develop alternative new drugs and treatment strategies that can enhance therapeutic outcomes and effectively treat giardiasis. Natural compounds show promise in the search for more potent anti-giardial agents. Our investigation focused on the effect of Andrographolide (ADG), an active compound of the Andrographis paniculata plant, on Giardia lamblia, assessing trophozoite growth, morphological changes, cell cycle arrest, DNA damage and inhibition of gene expression associated with pathogenic factors. ADG demonstrated anti-Giardia activity almost equivalent to the reference drug metronidazole, with an IC50 value of 4.99 µM after 24 h of incubation. In cytotoxicity assessments and morphological examinations, it showed significant alterations in trophozoite shape and size and effectively hindered the adhesion of trophozoites. It also caused excessive ROS generation, DNA damage, cell cycle arrest and inhibited the gene expression related to pathogenesis. Our findings have revealed the anti-giardial efficacy of ADG, suggesting its potential as an agent against Giardia infections. This could offer a natural and low-risk treatment option for giardiasis, reducing the risk of side effects and drug resistance.


Subject(s)
Antiprotozoal Agents , Cell Cycle Checkpoints , DNA Damage , Diterpenes , Giardia lamblia , Inhibitory Concentration 50 , Reactive Oxygen Species , Trophozoites , Diterpenes/pharmacology , Giardia lamblia/drug effects , Giardia lamblia/growth & development , Giardia lamblia/genetics , Trophozoites/drug effects , Trophozoites/growth & development , Cell Cycle Checkpoints/drug effects , Reactive Oxygen Species/metabolism , DNA Damage/drug effects , Antiprotozoal Agents/pharmacology , Humans , Animals , Gene Expression/drug effects , Metronidazole/pharmacology
2.
Parasitology ; 151(4): 429-439, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571301

ABSTRACT

Entamoeba moshkovskii, according to recent studies, appears to exert a more significant impact on diarrhoeal infections than previously believed. The efficient identification and genetic characterization of E. moshkovskii isolates from endemic areas worldwide are crucial for understanding the impact of parasite genomes on amoebic infections. In this study, we employed a multilocus sequence typing system to characterize E. moshkovskii isolates, with the aim of assessing the role of genetic variation in the pathogenic potential of E. moshkovskii. We incorporated 3 potential genetic markers: KERP1, a protein rich in lysine and glutamic acid; amoebapore C (apc) and chitinase. Sequencing was attempted for all target loci in 68 positive E. moshkovskii samples, and successfully sequenced a total of 33 samples for all 3 loci. The analysis revealed 17 distinct genotypes, labelled M1­M17, across the tested samples when combining all loci. Notably, genotype M1 demonstrated a statistically significant association with diarrhoeal incidence within E. moshkovskii infection (P = 0.0394). This suggests that M1 may represent a pathogenic strain with the highest potential for causing diarrhoeal symptoms. Additionally, we have identified a few single-nucleotide polymorphisms in the studied loci that can be utilized as genetic markers for recognizing the most potentially pathogenic E. moshkovskii isolates. In our genetic diversity study, the apc locus demonstrated the highest Hd value and π value, indicating its pivotal role in reflecting the evolutionary history and adaptation of the E. moshkovskii population. Furthermore, analyses of linkage disequilibrium and recombination within the E. moshkovskii population suggested that the apc locus could play a crucial role in determining the virulence of E. moshkovskii.


Subject(s)
Entamoeba , Multilocus Sequence Typing , Genetic Markers , Entamoeba/genetics , Entamoeba/classification , Entamoeba/isolation & purification , Humans , Entamoebiasis/parasitology , Entamoebiasis/epidemiology , Genotype , Polymorphism, Single Nucleotide , Genetic Variation , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...