Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Chem Neurosci ; 15(6): 1084-1095, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38462729

ABSTRACT

People travel to high-altitude regions as tourists, workers, and military personnel on duty. Despite the consistent 21% oxygen content in the atmosphere, ascending to higher altitudes results in a decrease in the partial pressure of oxygen, inducing a state known as hypobaric hypoxia (HH). HH is an environmental stress that is responsible for neuroinflammation and behavioral deficits (anxiety, depression, mood disturbance, etc.), but little is known about its metabolic pathways. The kynurenine pathway (KP) is a promising candidate to uncover the mysteries of HH stress, as it is an important regulator of the immune system and is associated with behavioral deficits. To investigate the role of KP under HH, the levels of KP metabolites in the serum, cerebrospinal fluid (CSF), and brain tissue (prefrontal cortex-PFC, neocortex, and hippocampus) of male Sprague-Dawley rats exposed to HH at 7620 m for 1, 3, and 7 days were estimated utilizing high-performance liquid chromatography (HPLC). The behavioral analogs for anxiety-like and depression-like behavior were assessed using the open field test and forced swim test, respectively. Upon HH exposure, crosstalk between the periphery and central nervous system and KP metabolite region-dependent differential expression in the brain were observed. KP metabolites showed a positive correlation with behavioral parameters. The results of our study are indicative that KP can be proposed as the etiology of behavioral deficits, and KP metabolite levels in serum or CSF can be used as plausible markers for anxiety-like and depression-like behaviors under HH stress with a scope of targeted therapeutic interventions.


Subject(s)
Hypoxia , Kynurenine , Humans , Rats , Male , Animals , Rats, Sprague-Dawley , Hypoxia/metabolism , Hippocampus/metabolism , Oxygen/metabolism
2.
Toxicol Ind Health ; 39(3): 127-137, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36680355

ABSTRACT

Zinc oxide nanoparticles (ZnO NP) are commonly used engineered NPs with extensive usage in consumer products, thus leading to direct exposure to humans. The direct route of exposure is through inhalation. Once inhaled, these particles accumulate in the lungs, increasing the chances of respiratory tract illness through cellular organelle damage. Zinc oxide nanoparticle-treated lung cells are reported to display cytotoxicity, increase DNA damage, and induce oxidative stress. The current study focused on the effects of ZnO NPs on mitochondrial dynamics (fission and fusion) in human lung epithelial cells (A549). The lung cells were exposed to ZnO NPs at 50 and 100 µg/ml concentrations, and their mitochondrial dynamics were assessed to understand the effects of the NPs. Treatment with ZnO NPs reduced the activity of mitochondrial complex I and complex III and altered mitochondrial structural and functional characteristics in a concentration-dependent manner. Zinc oxide nanoparticles exposure showed an increase in small and round-shaped mitochondria. The expression of various fission proteins (Drp1 and Fis1) and fusion proteins (Mfn1, Mfn2, and OPA1) was altered upon exposure to ZnO NPs. Our studies showed dysfunction of the mitochondria induced by ZnO NPs. In fibroblast mitochondrial dynamics, fission symbolizes threshold damage. In this paper, we have shown that the mitochondrial fission phenotype increased upon exposure to ZnO NPs. The paper emphasizes that these particles enter mitochondria, triggering a stress response that results in the removal of mitochondria via fission. It provides relevant data for safety guidelines to ensure the safer use of these particles.


Subject(s)
Nanoparticles , Zinc Oxide , Humans , Zinc Oxide/toxicity , Alveolar Epithelial Cells , Reactive Oxygen Species/metabolism , Nanoparticles/toxicity , Mitochondria
3.
Chem Biol Interact ; 369: 110284, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36462549

ABSTRACT

ZnO nanoparticles (ZnO NPs) are widely used engineered nanomaterials. Due to induced genotoxicity, increased oxidative stress, and teratogenicity, these NPs have been reported to be toxic. In the present study, we emphasise the role of vital proteins in regulating ZnO NP-induced abnormal phenotypes, particularly the deformed thorax and single wing in the Drosophila melanogaster progeny fed on 0.1-10 mM ZnO NPs. To understand how protein expression regulates this particular phenotype on ZnO NPs exposure, toxicoproteomics profile of control and abnormal phenotype flies was generated using LC/MS/MS. Gene ontology enrichment studies of proteomics data were carried out using CLUEGO and STRAP software. The bioinformatics tool STRING was used to generate a protein-protein interaction map of key proteins of enrichment analysis. Following ZnO NP exposure, the differential expression of key proteins of the Wnt pathway was prominent. Altered expression of various proteins of the Wnt pathway (CaMKII), cytoskeleton (Actin), and calponin resulted in developmental defects in drosophila progeny. In addition, immunohistology studies showed a significant deviation in the expression of wingless protein of ZnO NPs treated larvae in comparison to control. According to these findings, the interaction of the wnt pathway and cytoskeletal proteins with ZnO NPs caused developmental abnormalities in the subsequent generation of drosophila, highlighting the transgenerational toxic effects of these nanoparticles.


Subject(s)
Zinc Oxide , Animals , Zinc Oxide/toxicity , Drosophila , Wnt Signaling Pathway , Drosophila melanogaster , Tandem Mass Spectrometry , Oxidative Stress , Cytoskeletal Proteins , Cytoskeleton , Calponins
4.
J Psychiatr Res ; 149: 155-161, 2022 05.
Article in English | MEDLINE | ID: mdl-35276632

ABSTRACT

The present study is conducted to understand the association of mood profile with the kynurenine pathway (KP) metabolites, and cerebral hemodynamics in freshly recruited central armed forces personnel. Profile of Mood States questionnaire was utilized to assess mood profile, and Total Mood Disturbance (TMD) score was calculated. Transcranial Doppler was used to record blood flow velocity bilaterally of the middle cerebral artery. Chromatographic profile of the kynurenine metabolites was obtained in serum. Further, personnel were stratified according to sociodemographic variables (gender, age and diet) to observe the changes in their KP metabolic status. An activation of the kynurenic acid branch of the KP and the reduction in the mean blood flow velocity, and an increase in Gosling pulsatility index (PI) were observed in females having high TMD score. On gender comparative analysis, kynurenine metabolites of quinolinic acid branch and serotonin were significantly high in males. In males, with increase in age, a significant increase in the quinolinic acid branch of the KP was observed. Furthermore, a significant difference in level metabolites of the KP among the vegetarian and non-vegetarian groups was also observed. In conclusion we observed that increased TMD score was associated with cerebral hypoperfusion and higher vascular resistance along with activation of the KP. Our findings highlighted the importance of multi-facet brain function to showcase the close interaction of various dimensionalities and true picture of the assessee.


Subject(s)
Kynurenine , Military Personnel , Animals , Cerebrovascular Circulation , Female , Geese/metabolism , Humans , Male , Quinolinic Acid/metabolism
5.
Behav Brain Res ; 416: 113568, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34499936

ABSTRACT

Hypobaric Hypoxia (HH) is known to cause oxidative stress in the brain that leads to spatial memory deficit and neurodegeneration. For decades therapeutic hypothermia is used to treat global and focal ischemia in preserving brain functions that proved to be beneficial in humans and rodents. Considering these previous reports, the present study was designed to establish the therapeutic potential of hypothermia preconditioning on HH induced spatial memory, biochemical and morphological changes in adult rats. Male Sprague Dawley rats were exposed to HH (7620 m, ~ 282 mmHg) for 1, 3 and 7 days with and without hypothermic preconditioning. Spatial learning memory was assessed by Morris water maze (MWM) test along with evaluation of hippocampal pyramidal neuron damage by histological study. Oxidative stress was measured by studying the levels of nitric oxide (NO), reactive oxygen species (ROS), lipid peroxidation (LPO), oxidized and reduced glutathione (GSSG and GSH). Results of MWM test indicated prolonged path length and latency to reach the platform in HH groups that regained to normal in cold pre-treated groups. A likely neurodegeneration was evident in HH groups that lessen in the cold pre-treated groups. Hypothermic preconditioning prevented spatial memory impairment and neurodegeneration in animals subjected to HH via decreasing the NO, ROS and LPO compared to control animals. The GSH level and GSH/GSSG ratio was found to be higher in preconditioned animals as compared to respective HH exposed animals, indicative of redox scavenging and restoration of hippocampal neuronal structure as well as spatial memory. Therefore, hypothermic preconditioning improves spatial memory deficit by reducing HH induced oxidative stress and hippocampal neurodegeneration, hence can be used as a multi-target prophylactic measure to combat HH induced neurodegeneration.


Subject(s)
Hippocampus/physiopathology , Hypothermia/chemically induced , Hypoxia, Brain/physiopathology , Memory Disorders/physiopathology , Pyramidal Cells/pathology , Spatial Memory/physiology , Animals , Glutathione/metabolism , Hippocampus/pathology , Hypoxia, Brain/pathology , Lipid Peroxidation/physiology , Male , Morris Water Maze Test , Oxidative Stress/physiology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species
6.
Int J Radiat Biol ; 97(11): 1606-1616, 2021.
Article in English | MEDLINE | ID: mdl-34402374

ABSTRACT

PURPOSE: The model biological organism Drosophila melanogaster has been utilized to assess the effect of extremely low-frequency electromagnetic field (ELF-EMF) on locomotion, longevity, developmental dynamics, cell viability and oxidative stress. MATERIALS AND METHOD: Developmental stages of Drosophila melanogaster (Oregon R strain) individually exposed to ELF-EMF (75 Hz, 550 µT) for 6 h once for acute exposure. For chronic exposure, complete life cycle of fly, that is, egg to adult fly was exposed to ELF-EMF for 6 h daily. The effect of exposure on their crawling and climbing ability, longevity, development dynamics, cellular damage and oxidative stress (generation of reactive oxygen species (ROS)) was evaluated. RESULTS: The crawling ability of larvae was significantly (p < .05) reduced on acute (third stage instar larvae) as well as chronic exposure (F0 and F1 larvae). When locomotion of flies was tested using climbing assay, no alteration was observed in their climbing ability under both acute and chronic exposure; however, when their speed of climbing was compared, a significant decrease in speed of F1 flies was observed (p = .0027) on chronic exposure. The survivability of flies was significantly affected under chronic and acute exposure (at third stage instar larvae). In case of acute exposure of the third stage instar larvae, although all the flies were eclosed by the 17th day, there was a significant decline in the number of flies (p = .007) in comparison to control. While in case of chronic exposure apart from low number of flies eclosed in comparison to control, there was delay in eclosion by one day (p = .0004). Using trypan blue assay, the internal gut damage of third stage instar larvae was observed. Under acute exposure condition at third stage instar larvae, 30% larvae has taken up trypan blue, while only 10% larvae from acute exposure at adult stage. On chronic exposure, 50% larvae of the F1 generation have taken up trypan blue. On evaluation of oxidative stress, there is a significant rise in ROS in case of acute exposure at third stage instar larvae (p = .0004), adult fly stage (p = .0004) and chronic exposure (p = .0001). CONCLUSION: ELF-EMF has maximum effects on acute exposure of third stage instar larvae and chronic exposure (egg to adult fly stage). These results suggest that electromagnetic radiations, though, have become indispensible part of our lives but they plausibly affect our health.


Subject(s)
Drosophila melanogaster , Electromagnetic Fields , Animals , Electromagnetic Fields/adverse effects , Larva , Oxidative Stress , Reactive Oxygen Species , Trypan Blue
7.
ACS Chem Neurosci ; 11(20): 3194-3203, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33006881

ABSTRACT

The world is experiencing one of the major viral outbreaks of this millennium, caused by a plus sense single-stranded RNA virus belonging to the Coronaviridae family, COVID-19, declared as pandemic by WHO. The clinical manifestations vary from asymptomatic to mild symptoms like fever, dry cough, and diarrhea, with further increase in severity leading to the development of acute respiratory distress syndrome. Though primary manifestations are respiratory and cardiac, various studies have shown the neuroinvasive capability of this virus resulting in neurological complications, which sometimes can precede common typical symptoms like fever and cough. Common neurological symptoms are headache, dizziness, anosmia, dysgeusia, confusion, and muscle weakening, progressing toward severe complications like cerebrovascular disease, seizures, or paralysis. Older adults and critically ill people are in the high risk group and have shown severe neurological symptoms upon infection. COVID-19 also has a profound impact on the mental health of people across the world. In this review, we briefly discuss the neurological pathologies and psychological impact due to COVID-19, which has not only stressed the physical health of people but has also created social and economic problems resulting in mental health issues.


Subject(s)
Coronavirus Infections/pathology , Coronavirus Infections/psychology , Mental Disorders/virology , Nervous System Diseases/virology , Pneumonia, Viral/pathology , Pneumonia, Viral/psychology , Betacoronavirus , COVID-19 , Humans , Pandemics , SARS-CoV-2
8.
Biochim Biophys Acta Mol Basis Dis ; 1866(7): 165769, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32184133

ABSTRACT

Brain is well known for its disproportionate oxygen consumption and high energy-budget for optimal functioning. The decrease in oxygen supply to brain, thus, necessitates rapid activation of adaptive pathways - the absence of which manifest into vivid pathological conditions. Amongst these, oxygen sensing in glio-vascular milieu and H2S-dependent compensatory increase in cerebral blood flow (CBF) is a major adaptive response. We had recently demonstrated that the levels of H2S were significantly decreased during chronic hypobaric hypoxia (HH)-induced neuro-pathological effects. The mechanistic basis of this phenomenon, however, remained to be deciphered. We, here, describe experimental evidence for marked limitation of cysteine during HH - both in animal model as well as human volunteers ascending to high altitude. We show that the preservation of brain cysteine level, employing cysteine pro-drug (N-acetyl-L-cysteine, NAC), markedly curtailed effects of HH - not only on endogenous H2S levels but also, impairment of spatial reference memory in our animal model. We, further, present multiple lines of experimental evidence that the limitation of cysteine was causally governed by physiological propensity of brain to utilize cysteine, in cystathionine beta synthase (CBS)-dependent manner, past its endogenous replenishment potential. Notably, decrease in the levels of brain cysteine manifested despite positive effect (up-regulation) of HH on endogenous cysteine maintenance pathways and thus, qualifying cysteine as a conditionally essential nutrient (CEN) during HH. In brief, our data supports an adaptive, physiological role of CBS-mediated cysteine-utilization pathway - activated to increase endogenous levels of H2S - for optimal responses of brain to hypobaric hypoxia.


Subject(s)
Altitude Sickness/metabolism , Brain/metabolism , Cystathionine beta-Synthase/genetics , Cysteine/metabolism , Hydrogen Sulfide/metabolism , Acetylcysteine/pharmacology , Adaptation, Physiological , Adult , Altitude Sickness/drug therapy , Altitude Sickness/genetics , Altitude Sickness/pathology , Animals , Brain/pathology , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/genetics , Cystathionine beta-Synthase/metabolism , Disease Models, Animal , Energy Metabolism/genetics , Humans , Hypoxia/drug therapy , Hypoxia/genetics , Hypoxia/metabolism , Male , Oxygen Consumption/genetics , Prodrugs/pharmacology , Rats , Young Adult
9.
Nanotoxicology ; 13(7): 977-989, 2019 09.
Article in English | MEDLINE | ID: mdl-31012773

ABSTRACT

Aluminum oxide (Al2O3) nanoparticles (NPs) have a wide number of applications which cause intentional and unintentional exposure to humans, making it important to understand the nano-bio interaction. In this study, we made an attempt to evaluate the toxic effects of Al2O3 NPs chronic exposure on Drosophila melanogaster. Flies were exposed to Al2O3 NPs at concentration 0.1 and 1 mM via ingestion throughout their lifespan and progeny flies were screened for behavioral and phenotypic abnormalities. Behavioral abnormalities in flies were recorded through larval crawling, climbing in flies and two taste testing. Chronic exposure of Al2O3 NPs resulted in the loss of appendages in flies resulting in five legs flies, four legs flies and absence of haltere. Exposure to Al2O3 NPs caused renal failure in flies as observed by swollen abdomen. Our observations clearly showed that these NPs could cause detrimental health ailments which relate to human birth deformities and kidney failure. Damage at the cellular level was studied through proteomic profiling. Three hundred and seven unique proteins were expressed on exposure to Al2O3 NPs and 51 proteins were differentially expressed. Enrichment analysis of differentially expressed proteins showed significant alteration in striated muscle cell differentiation, digestive tract morphogenesis, phototransduction, regulation of chromatin organization and DNA duplex unwinding.


Subject(s)
Aluminum Oxide/toxicity , Metal Nanoparticles/toxicity , Animals , Drosophila melanogaster/drug effects , Drosophila melanogaster/metabolism , Humans
10.
J Hazard Mater ; 327: 180-186, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28064146

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) are commonly used nanomaterials (NMs) with versatile applications from high-end technologies to household products. This pervasive utilisation has brought human in the close interface with nanoparticles (NPs), hence questioning their safety prior to usage is a must. In this study, we have assessed the effects of chronic exposure to ZnO NPs (<50nm) on the model organism Drosophila melanogaster. Potential toxic effects were studied by evaluating longevity, climbing ability, oxidative stress and DNA fragmentation. Ensuing exposure, the F0 (parent), F1, F2, F3 and F4 generation flies were screened for the aberrant phenotype. Flies exposed to ZnO NPs showed distinctive phenotypic changes, like deformed segmented thorax and single or deformed wing, which were transmitted to the offspring's in subsequent generations. The unique abnormal phenotype is evident of chronic toxicity induced by ZnO NPs, although appalling, it strongly emphasize the importance to understand NPs toxicity for safer use.


Subject(s)
Drosophila melanogaster , Metal Nanoparticles/toxicity , Mutagens/toxicity , Zinc Oxide/toxicity , Abnormalities, Drug-Induced/pathology , Animals , DNA Damage , DNA Fragmentation , Hemocytes/drug effects , Longevity , Motor Activity/drug effects , Oxidative Stress/drug effects , Phenotype , Risk Assessment
11.
EBioMedicine ; 6: 171-189, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27211559

ABSTRACT

Hypobaric Hypoxia (HH) is an established risk factor for various neuro-physiological perturbations including cognitive impairment. The origin and mechanistic basis of such responses however remain elusive. We here combined systems level analysis with classical neuro-physiological approaches, in a rat model system, to understand pathological responses of brain to HH. Unbiased 'statistical co-expression networks' generated utilizing temporal, differential transcriptome signatures of hippocampus-centrally involved in regulating cognition-implicated perturbation of Glio-Vascular homeostasis during early responses to HH, with concurrent modulation of vasomodulatory, hemostatic and proteolytic processes. Further, multiple lines of experimental evidence from ultra-structural, immuno-histological, substrate-zymography and barrier function studies unambiguously supported this proposition. Interestingly, we show a significant lowering of H2S levels in the brain, under chronic HH conditions. This phenomenon functionally impacted hypoxia-induced modulation of cerebral blood flow (hypoxic autoregulation) besides perturbing the strength of functional hyperemia responses. The augmentation of H2S levels, during HH conditions, remarkably preserved Glio-Vascular homeostasis and key neuro-physiological functions (cerebral blood flow, functional hyperemia and spatial memory) besides curtailing HH-induced neuronal apoptosis in hippocampus. Our data thus revealed causal role of H2S during HH-induced early Glio-Vascular dysfunction and consequent cognitive impairment.


Subject(s)
Altitude Sickness/genetics , Cognitive Dysfunction/drug therapy , Gene Expression Profiling/methods , Hippocampus/blood supply , Hydrogen Sulfide/administration & dosage , Oligonucleotide Array Sequence Analysis/methods , Altitude Sickness/complications , Animals , Cerebrovascular Circulation/drug effects , Cognitive Dysfunction/genetics , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Hippocampus/chemistry , Hippocampus/drug effects , Humans , Hydrogen Sulfide/pharmacology , Male , Maze Learning/drug effects , Rats
12.
Int J Biochem Cell Biol ; 44(1): 211-23, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22064248

ABSTRACT

Cellular potassium homeostasis has recently emerged as a critical regulator of apoptosis in response to variety of stimuli. However, functional hierarchy of this phenomenon in the apoptotic cascade and therefore, its significance as a pathway for intervention is not fully established. Chronic hypoxia, a known threat to cell survival, also modulates cellular potassium homeostasis. In this study, we tested if hypoxia-induced apoptosis in lymphocytes can be prevented by modulating cellular K+ homeostasis. We observed that chronic hypoxia accelerated the rate of apoptosis in resting murine splenocytes concomitant with cytosolic K+ efflux. We tested several modalities including elevated extracellular potassium besides various K+ channel inhibitors to curtail hypoxia-induced K+ efflux and interestingly, established that the supplementation of KCl in extracellular medium was most effective in preventing hypoxia-induced apoptosis in these cells. Subsequent mechanistic dissection of pathways underlying this phenomenon revealed that besides effectively inhibiting hypoxia-induced efflux of K+ ion and its downstream cell-physiological consequences; elevated extracellular KCl modulated steady state levels of cellular ATP and culminated in stabilization of AMPKα with pro-survival consequences. Also, interestingly, global gene expression profiling revealed that KCl supplementation down regulated a distinct p53-regulated cellular sub-network of genes involved in regulation of DNA replication. Additionally, we present experimental evidence for the functional role of AMPK and p53 activation during suppression of hypoxia-induced apoptosis. In conclusion, our study highlights a novel bimodal effect wherein cooperativity between restoration of K+ homeostasis and a sustainable 'metabolic quiescence' induced by AMPK activation appeared indispensible for curtailing hypoxia-induced apoptosis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Potassium/metabolism , AMP-Activated Protein Kinases/genetics , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Cell Hypoxia/physiology , Cell Membrane/metabolism , Cells, Cultured , Cytosol/metabolism , Gene Expression Regulation/drug effects , Mice , Mice, Inbred BALB C , Potassium Channel Blockers/pharmacology , Potassium Channels/metabolism , Potassium Chloride/pharmacology , S Phase/drug effects , S Phase/physiology , Spleen/cytology , Spleen/drug effects , Spleen/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...