Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(36): 40828-40837, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32786247

ABSTRACT

Electromagnetic interference (EMI) pollution has now become a subject of great concern with the rapid development of delicate electronic equipment in commercial, civil, and military operations. There has been a surge in pursuit of light-weight, adaptable, effective, and efficient EMI screening materials in recent years. The present article addresses a simple and sensitive approach to synthesize a core/shell carbon nanotube/MoS2 heterostructure supported on reduced graphene oxide (CNT/MoS2-rGO nanohybrid) as an efficient electromagnetic shielding material. The structural and morphological characteristics were accessed through X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy, augmenting successful formation of the CNT/MoS2-rGO nanohybrid. The shielding performance of the as-synthesized samples has been accessed in a wide frequency range of 8-12 GHz. A CNT/MoS2-rGO nanohybrid demonstrates a better EMI shielding performance in comparison to MoS2 nanosheets and MoS2-rGO nanohybrid individually. The CNT/MoS2-rGO nanohybrid having a thickness ∼1 mm shows excellent total shielding effectiveness (SET) as high as 40 dB, whereas MoS2 and MoS2-rGO hybrid lags far, with the average value of SET as 7 and 28 dB, respectively. It also demonstrates that the nanohybrid CNT/MoS2-rGO shields the EM radiation by means of absorption through several functional defects and multiple interfaces present in the heterostructure. Herein, we envision that our results provide a simple and innovative approach to synthesize the light-weight CNT/MoS2-rGO nanohybrid having flexibility and high shielding efficiency and widen its practical applications in stealth technology.

2.
RSC Adv ; 9(38): 21881-21892, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-35518872

ABSTRACT

Magnetic CoFe2O4 nanoparticles decorated onto the surface of a MoS2-reduced graphene oxide (MoS2-rGO/CoFe2O4) nanocomposite were synthesized by a simple two-step hydrothermal method. The electromagnetic (EM) wave absorption performance and electromagnetic interference (EMI) shielding effectiveness of the materials were examined in the frequency range of 8.0-12.0 GHz (X-band). The MoS2-rGO/CoFe2O4 nanocomposite was characterized by various tools such as X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. High-resolution transmission electron microscopy results confirmed the decoration of magnetic nanoparticles onto the surface of the MoS2-rGO nanocomposite with a diameter of 8-12 nm. The multiple interfacial polarization, moderate impedance matching, and defect dipole polarization improve the dielectric and magnetic loss of the materials, which leads to strong attenuation loss ability of incident EM energy within the shield. The pure MoS2-rGO nanocomposite represents total shielding effectiveness (SET ∼16.52 dB), while the MoS2-rGO/CoFe2O4 nanocomposite exhibits total shielding effectiveness (SET ∼19.26 dB) over the entire frequency range. It may be explained that the magnetic nanoparticles (CoFe2O4) serve as excellent conductive and magnetic fillers with a large surface area, leading to the migration of charge carriers at multi-interfaces.

3.
RSC Adv ; 9(39): 22232-22239, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-35519470

ABSTRACT

In this paper, we demonstrate a facile solvothermal synthesis of a vanadium(v) doped MoS2-rGO nanocomposites for highly efficient electrochemical hydrogen evolution reaction (HER) at room temperature. The surface morphology, crystallinity and elemental composition of the as-synthesized material have been thoroughly analyzed. Its fascinating morphology propelled us to investigate the electrochemical performance towards the HER. The results show that it exhibits excellent catalytic activity with a low onset potential of 153 mV versus reversible hydrogen electrode (RHE), a small Tafel slope of 71 mV dec-1, and good stability over 1000 cycles under acidic conditions. The polarization curve after the 1000th cycle suggests there has been a decrement of less than 5% in current density with a minor change in onset potential. The synergistic effects of V-doping at S site in MoS2 NSs leading to multiple active sites and effective electron transport route provided by the conductive rGO contribute to the high activity for the hydrogen evolution reaction. The development of a high-performance catalyst may encourage the effective application of the as-synthesized V-doped MoS2-rGO as a promising electrocatalyst for hydrogen production.

SELECTION OF CITATIONS
SEARCH DETAIL
...