Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 122: 110585, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421777

ABSTRACT

Ulcerative colitis (UC) is an idiopathic, chronic disorder of the intestines characterized by excessive inflammation and oxidative stress. Loganic acid (LA) is an iridoid glycoside reported to have antioxidant and anti-inflammatory properties. However, the beneficial effects of LA on UC are unexplored yet. Thus, this study aims to explore the potential protective effects of LA and its possible mechanisms. In-vitro models were employed using LPS-stimulated RAW 264.7 macrophage cells, and Caco-2 cells, whereas an in-vivo model of ulcerative colitis was employed using 2.5% DSS in BALB/c mice. Results indicated that LA significantly suppressed the intracellular ROS levels and inhibited the phosphorylation of NF-κB in both RAW 264.7 and Caco-2 cells, contrarily LA activated the Nrf2 pathway in RAW 264.7 cells. In DSS-induced colitis mice, LA significantly alleviated the inflammation and colonic damage by decreasing the pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α, and IFN-γ), oxidative stress markers (MDA, and NO), and also expression levels of various inflammatory proteins (TLR4 and NF-кB) which was evidenced by immunoblotting. On the contrary, the release of GSH, SOD, HO-1, and Nrf2 were profoundly increased upon LA treatment.Subsequently, molecular docking studies showed that LA interacts with active site regions of target proteins (TLR4, NF-κB, SIRT1, and Nrf2) through hydrogen bonding and salt bridge interaction. The current findings demonstrated that LA could exhibit a protective effect in DSS-induced ulcerative colitis through its anti-inflammatory and anti-oxidant effects via inactivating the TLR4/NF-κB signaling pathway and activating the SIRT1/Nrf2 pathways.


Subject(s)
Colitis, Ulcerative , Humans , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , NF-kappa B/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , NF-E2-Related Factor 2/metabolism , Toll-Like Receptor 4/metabolism , Sirtuin 1 , Molecular Docking Simulation , Caco-2 Cells , Inflammation/drug therapy , Anti-Inflammatory Agents/adverse effects , Dextran Sulfate
2.
Biochem Pharmacol ; 211: 115528, 2023 05.
Article in English | MEDLINE | ID: mdl-37011733

ABSTRACT

It is strongly established that metabolic reprogramming mediates the initiation, progression, and metastasis of a variety of cancers. However, there is no common biomarker identified to link the dysregulated metabolism and cancer progression. Recent studies strongly advise the involvement of aldose reductase (AR) in cancer metabolism. AR-mediated glucose metabolism creates a Warburg-like effect and an acidic tumour microenvironment in cancer cells. Moreover, AR overexpression is associated with the impairment of mitochondria and the accumulation of free fatty acids in cancer cells. Further, AR-mediated reduction of lipid aldehydes and chemotherapeutics are involved in the activation of factors promoting proliferation and chemo-resistance. In this review, we have delineated the possible mechanisms by which AR modulates cellular metabolism for cancer proliferation and survival. An in-depth understanding of cancer metabolism and the role of AR might lead to the use of AR inhibitors as metabolic modulating agents for the therapy of cancer.


Subject(s)
Aldehyde Reductase , Neoplasms , Humans , Aldehyde Reductase/metabolism , Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Aldehydes , Tumor Microenvironment
3.
J Ethnopharmacol ; 301: 115765, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36195303

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mesua Assamica (King & prain) Kosterm. (MA) is an evergreen endemic medicinal tree available in Assam in India and other parts of south Asia. The bark of the plant is traditionally used for ant-malarial activity and treating fevers. It was reported to have anti-oxidant, anti-inflammatory, anti-diabetic, anti-cancer and anti-malarial properties, but no research findings have been reported about its protective activity on intestinal inflammatory disorders like ulcerative colitis (UC) yet. AIM OF THE STUDY: The aim of the current study is to evaluate the anti-ulcerative property of ethanolic extract of MA (MAE) in-vitro on GloResponse™ NF-кB-RE-luc2P HEK 293 cells for its anti-oxidant and anti-inflammatory activities and in-vivo chronic restraint stress aggravated dextran sodium sulfate (DSS)-induced UC model. MATERIALS AND METHODS: The chemical constituents of MAE were identified by LC-MS/MS. The in-vitro effects of MAE on GloResponse™ NF-кB-RE-luc2P HEK 293 cells stimulated with TNF-α 30 ng/ml were investigated for its potential therapeutic effects. Parameters such as body weights, behavioural, colonoscopy, colon lengths and spleen weights were measured and recorded in chronic restraint stress aggravated DSS-induced UC model in C57BL/6 mice. Histological, cytokines and immunoblotting analysis in the colon tissues were determined to prove its anti-inflammatory and anti-oxidant activities. RESULTS: MAE poses significant anti-oxidant and anti-inflammatory activity in-vitro in GloResponse™ NF-кB-RE-luc2P HEK 293 cells evidenced by DCFDA and immunoflourescence assay. MAE treatment at 100 mg/kg and 200 mg/kg for 14 consecutive days has reduced Disease activity Index (DAI), splenomegaly and improved the shortened colon length and sucrose preference in mice. MAE treatment has increased the levels of anti-oxidants like GSH and reduced the levels of MDA, MPO and nitrite levels in colon tissues. Moreover, MAE has ameliorated neutrophil accumulation, mucosal and submucosal inflammation and crypt density evidenced by histopathology. Furthermore, MAE treatment significantly reduced the increased pro-inflammatory cytokines like IL-6, IL-1ß and TNF-α. we found from immunoblotting that there is a concomitant decrease in protein expression of NF-κB, STAT3 signalling cascades and phosphorylation of IKBα with an increase in Nrf2, SOD2, HO-1 and SIRT1 in colon tissues. In addition, we have performed molecular docking studies confirming that phytochemicals present in the MAE have a stronger binding ability and druggability to the NF-κB, Nrf2 and SIRT1 proteins. CONCLUSIONS: MAE exhibited significant anti-colitis activity on chronic restraint stress aggravated DSS-induced ulcerative colitis via regulating NF-κB/STAT3 and HO-1/Nrf2/SIRT1 signaling pathways.


Subject(s)
Colitis, Ulcerative , NF-kappa B , Animals , Humans , Mice , Anti-Inflammatory Agents , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Chromatography, Liquid , Colitis, Ulcerative/chemically induced , Colon , Cytokines/metabolism , Dextran Sulfate , HEK293 Cells , Mice, Inbred C57BL , Molecular Docking Simulation , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Plant Bark/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Signal Transduction , Sirtuin 1/metabolism , Tandem Mass Spectrometry , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...