Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(34): 11975-11991, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37589419

ABSTRACT

The study of drop deformation in response to various stresses has long piqued the interest of several academics. The deformation behavior of cells, drug carriers, and even drug particles moving via microcapillaries inside the human body can be modeled using a viscoelastic drop model. A drop breakup study can also provide better design guidance for nanocarriers that can deliver on-demand burst drug releases at specific cancer sites. Thus, we attempted to investigate the deformation and breakup of a shear-thinning finitely extensible nonlinear elastic-peterlin (FENE-P) drop moving through the constricted microchannel. The computational simulation suggested that drop deformation and breakup can be manipulated by varying of parameters like channel confinement, Deborah number, solvent viscosity ratio, viscosity ratio, and capillary number. We attempted to find the critical capillary number for initiation of drop breakup. Observations from present study will give valuable insights into deformation and breakup patterns of drug carriers inside constricted microcapillaries. The simulations of the two-phase viscoelastic drop─Newtonian matrix system were performed on an open-source solver, Basilisk.

2.
Langmuir ; 38(6): 2014-2025, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35099972

ABSTRACT

Protein-bound paclitaxel has been developed clinically as one of the most successful chemotherapy drugs for the treatment of a wide variety of cancers. However, these medications, due to their nanoscale properties, may often induce capillary blocking while migrating through minute blood vessels. Considering the detrimental impact of this restriction, we investigated the transport of protein-bound paclitaxel, Paclicad, in a 7 µm microchannel mimicking the identical mechanical confinement of the blood capillaries. The drug was reported to migrate through a constricted microchannel without obstruction at a solution flow rate of 20-50 µL/h. The onset of an agglomeration site was observed at higher flow rates of 70-90 µL/h, while complete capillary obstruction was observed at 100 µL/h. The mobility of the particles was also calculated, and the results suggested that the presence of varying cross-sections affects the mobility of the drug particles. The trajectory of the particle migration was observed to be less tortuous at the higher flow rate, but the tortuous nature appeared to increase with the presence of agglomeration sites in the flow field. The experimental results were also compared with the computational model of the drug particle. The drug particle was modeled both as Newtonian and as an FENE-P viscoelastic drop. The drop interface tracking was done by the VOF method using the open source software Basilisk. The particle displacement was better estimated by both the FENE-P and Newtonian model at a flow rate of 30 µL/h, while deviation was observed at a flow rate of 50 µL/h. The FENE-P model was observed to show higher deformation than the Newtonian model at both flow rates. The experimental results provided better insight into the agglomeration tendency of Paclicad, migrating through a constricted microchannel at higher flow rates. The numerical model could be further employed to understand the more complex intravenous transport of drugs.


Subject(s)
Antineoplastic Agents , Neoplasms , Albumin-Bound Paclitaxel , Capillaries , Humans , Paclitaxel/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...