Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BJS Open ; 6(6)2022 11 02.
Article in English | MEDLINE | ID: mdl-36398754

ABSTRACT

BACKGROUND: This meta-analysis aimed to compare progression to surgery, extent of liver hypertrophy, and postoperative outcomes in patients planned for major hepatectomy following either portal vein embolization (PVE) or dual vein embolization (DVE) for management of an inadequate future liver remnant (FLR). METHODS: An electronic search was performed of MEDLINE, Embase, and PubMed databases using both medical subject headings (MeSH) and truncated word searches. Articles comparing PVE with DVE up to January 2022 were included. Articles comparing sequential DVE were excluded. ORs, risk ratios, and mean difference (MD) were calculated using fixed and random-effects models for meta-analysis. RESULTS: Eight retrospective studies including 523 patients were included in the study. Baseline characteristics between the groups, specifically, age, sex, BMI, indication for resection, and baseline FLR (ml and per cent) were comparable. The percentage increase in hypertrophy was larger in the DVE group, 66 per cent in the DVE group versus 27 per cent in the PVE group, MD 39.07 (9.09, 69.05) (P = 0.010). Significantly fewer patients failed to progress to surgery in the DVE group than the PVE group, 13 per cent versus 25 per cent respectively OR 0.53 (0.31, 0.90) (P = 0.020). Rates of post-hepatectomy liver failure 13 per cent versus 22 per cent (P = 0.130) and major complications 20 per cent versus 28 per cent (Clavien-Dindo more than IIIa) (P = 0.280) were lower. Perioperative mortality was lower with DVE, 1 per cent versus 10 per cent (P = 0.010). CONCLUSION: DVE seems to produce a greater degree of hypertrophy of the FLR than PVE alone which translates into more patients progressing to surgery. Higher quality studies are needed to confirm these results.


Subject(s)
Hepatectomy , Liver Neoplasms , Humans , Hepatectomy/methods , Portal Vein/surgery , Retrospective Studies , Liver Neoplasms/surgery , Hypertrophy/etiology , Hypertrophy/surgery
2.
Elife ; 62017 06 27.
Article in English | MEDLINE | ID: mdl-28654419

ABSTRACT

Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications.


Subject(s)
Carrier Proteins/analysis , Carrier Proteins/metabolism , Molecular Biology/methods , Staining and Labeling/methods , Animals , Mice
3.
Oncotarget ; 8(26): 42288-42299, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28178688

ABSTRACT

Surgical resection of colorectal cancer liver metastases (CLM) can be curative, yet 80% of patients are unsuitable for this treatment. As angiogenesis is a determinant of CLM progression we isolated endothelial cells from CLM and sought a mechanism which is upregulated, essential for angiogenic properties of these cells and relevant to emerging therapeutic options. Matched CLM endothelial cells (CLMECs) and endothelial cells of normal adjacent liver (LiECs) were superficially similar but transcriptome sequencing revealed molecular differences, one of which was unexpected upregulation and functional significance of the checkpoint kinase WEE1. Western blotting confirmed that WEE1 protein was upregulated in CLMECs. Knockdown of WEE1 by targeted short interfering RNA or the WEE1 inhibitor AZD1775 suppressed proliferation and migration of CLMECs. Investigation of the underlying mechanism suggested induction of double-stranded DNA breaks due to nucleotide shortage which then led to caspase 3-dependent apoptosis. The implication for CLMEC tube formation was striking with AZD1775 inhibiting tube branch points by 83%. WEE1 inhibitors might therefore be a therapeutic option for CLM and could be considered more broadly as anti-angiogenic agents in cancer treatment.


Subject(s)
Cell Cycle Proteins/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Endothelial Cells/metabolism , Liver Neoplasms/secondary , Nuclear Proteins/genetics , Protein-Tyrosine Kinases/genetics , Apoptosis/genetics , Caspase 3/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , DNA Breaks, Double-Stranded , Endothelial Cells/pathology , Humans , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism
4.
Nature ; 515(7526): 279-282, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25119035

ABSTRACT

The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca(2+)-permeable non-selective cationic channels for detection of noxious mechanical impact. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology.


Subject(s)
Endothelial Cells/cytology , Endothelial Cells/physiology , Friction , Ion Channels/metabolism , Stress, Mechanical , Animals , Embryo, Mammalian/blood supply , Embryo, Mammalian/metabolism , Female , Hemorheology , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...