Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 9(12)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32193233

ABSTRACT

Here, we report the complete sequence of four influenza A(H1N1) virus samples isolated from cases that occurred during the 2017 epidemic season in Kerala in South India. Sequence analysis showed mutations that differentiate this strain from the reference strain A/California/07/2009 virus.

2.
Sci Rep ; 9(1): 14690, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604969

ABSTRACT

Influenza A (H1N1) continues to be a major public health threat due to possible emergence of a more virulent H1N1 strain resulting from dynamic changes in virus adaptability consequent to functional mutations and antigenic drift in the hemagglutinin (HA) and neuraminidase (NA) surface proteins. In this study, we describe the genetic and evolutionary characteristics of H1N1 strains that circulated in India over a period of nine years from 2009 to 2017 in relation to global strains. The finding is important from a global perspective since previous phylogenetic studies have suggested that the tropics contributed substantially to the global circulation of influenza viruses. Bayesian phylogenic analysis of HA sequences along with global strains indicated that there is a temporal pattern of H1N1 evolution and clustering of Indian isolates with globally circulating strains. Interestingly, we observed four new amino acid substitutions (S179N, I233T, S181T and I312V) in the HA sequence of H1N1 strains isolated during 2017 and two (S181T and I312V) were found to be unique in Indian isolates. Structurally these two unique mutations could lead to altered glycan specificity of the HA gene. Similarly, sequence and structural analysis of NA domain revealed that the presence of K432E mutation in H1N1 strains isolated after 2015 from India and in global strains found to induce a major loop shift in the vicinity of the catalytic site. The findings presented here offer an insight as to how these acquired mutations could be associated to an improved adaptability of the virus for efficient human transmissibility.


Subject(s)
Disease Outbreaks , Evolution, Molecular , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/epidemiology , Adolescent , Adult , Amino Acid Substitution , Bayes Theorem , Child , Child, Preschool , Female , Genetic Drift , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , India/epidemiology , Infant , Influenza, Human/virology , Male , Middle Aged , Mutation , Neuraminidase/genetics , Phylogeny , Real-Time Polymerase Chain Reaction , Young Adult
3.
Genome Announc ; 5(28)2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28705972

ABSTRACT

We report here the whole-genome sequence of six clinical isolates of influenza A(H1N1)pdm09, isolated from Kerala, India. Amino acid analysis of all gene segments from the A(H1N1)pdm09 isolates obtained in 2014 and 2015 identified several new mutations compared to the 2009 A(H1N1) pandemic strain.

SELECTION OF CITATIONS
SEARCH DETAIL
...