Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 83(13): 6706-16, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19369334

ABSTRACT

The pathogenic subgroup C feline leukemia virus (FeLV-C) arises in infected cats as a result of mutations in the envelope (Env) of the subgroup A FeLV (FeLV-A). To better understand emergence of FeLV-C and potential FeLV intermediates that may arise, we characterized FeLV Env sequences from the primary FY981 FeLV isolate previously derived from an anemic cat. Here, we report the characterization of the novel FY981 FeLV Env that is highly related to FeLV-A Env but whose variable region A (VRA) receptor recognition sequence partially resembles the VRA sequence from the prototypical FeLV-C/Sarma Env. Pseudotype viruses bearing FY981 Env were capable of infecting feline, human, and guinea pig cells, suggestive of a subgroup C phenotype, but also infected porcine ST-IOWA cells that are normally resistant to FeLV-C and to FeLV-A. Analysis of the host receptor used by FY981 suggests that FY981 can use both the FeLV-C receptor FLVCR1 and the feline FeLV-A receptor THTR1 for infection. However, our results suggest that FY981 infection of ST-IOWA cells is not mediated by the porcine homologue of FLVCR1 and THTR1 but by an alternative receptor, which we have now identified as the FLVCR1-related protein FLVCR2. Together, our results suggest that FY981 FeLV uses FLVCR1, FLVCR2, and THTR1 as receptors. Our findings suggest the possibility that pathogenic FeLV-C arises in FeLV-infected cats through intermediates that are multitropic in their receptor use.


Subject(s)
Leukemia Virus, Feline/genetics , Membrane Transport Proteins/metabolism , Receptors, Virus/metabolism , Viral Envelope Proteins/genetics , Amino Acid Sequence , Animals , Cats , Cell Line , Cricetinae , Humans , Leukemia Virus, Feline/isolation & purification , Leukemia Virus, Feline/pathogenicity , Mice , Molecular Sequence Data , Sequence Alignment , Swine
2.
Virology ; 370(2): 273-84, 2008 Jan 20.
Article in English | MEDLINE | ID: mdl-17945326

ABSTRACT

The receptor-binding domain (RBD) in the surface (SU) subunit of gammaretrovirus envelope glycoprotein is critical for determining the host receptor specificity of the virus. This domain is separated from the carboxy terminal C domain (Cdom) of SU by a proline-rich region. In this study, we show that the Cdom region in the SU from subgroup C feline leukemia virus (FeLV-C) forms a second receptor-binding domain that is distinct from its RBD, and which can independently bind to its host receptor FLVCR1, in the absence of RBD. Furthermore, our results suggest that residues located in the C2 disulfide-bonded loop in FeLV-C Cdom are critical for SU binding to FLVCR1 and for virus infection. We propose that binding of FeLV-C SU to FLVCR1 involves interaction of two receptor-binding domains (RBD and Cdom) with FLVCR1, and that this mechanism of interaction is conserved for other gammaretroviruses. Our results could have important implications for designing gammaretrovirus vectors that can efficiently infect specific target cells.


Subject(s)
Gene Products, env/chemistry , Gene Products, env/physiology , Leukemia Virus, Feline/physiology , Amino Acid Sequence , Animals , Base Sequence , Binding Sites/genetics , Cats , Cell Line , DNA Primers/genetics , DNA, Viral/genetics , Gene Products, env/genetics , Humans , Leukemia Virus, Feline/classification , Leukemia Virus, Feline/genetics , Leukemia Virus, Feline/pathogenicity , Membrane Transport Proteins/genetics , Membrane Transport Proteins/physiology , Mice , Models, Biological , Molecular Sequence Data , Protein Structure, Tertiary , Receptors, Virus/genetics , Receptors, Virus/physiology , Retroviridae Proteins, Oncogenic/chemistry , Retroviridae Proteins, Oncogenic/genetics , Retroviridae Proteins, Oncogenic/physiology , Sequence Homology, Amino Acid , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...