Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 364, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842723

ABSTRACT

Beauveria bassiana (Bal.-Criv.) is an important entomopathogenic fungus being used for the management of various agricultural pests worldwide. However, all strains of B. bassiana may not be effective against whitefly, Bemisia tabaci, or other pests, and strains show diversity in their growth, sporulation, virulence features, and overall bioefficacy. Thus, to select the most effective strain, a comprehensive way needs to be devised. We studied the diversity among the 102 strains of B. bassiana isolated from 19 insect species based on their physiological features, virulence, and molecular phylogeny, to identify promising ones for the management of B. tabaci. Strains showed diversity in mycelial growth, conidial production, and their virulence against B. tabaci nymphs. The highest nymphal mortality (2nd and 3rd instar) was recorded with MTCC-4511 (95.1%), MTCC-6289 (93.8%), and MTCC-4565 (89.9%) at a concentration of 1 × 106 conidia ml-1 under polyhouse conditions. The highest bioefficacy index (BI) was in MTCC-4511 (78.3%), MTCC-4565 (68.2%), and MTCC-4543 (62.1%). MTCC-4511, MTCC-4565, and MTCC-4543 clustered with positive loading of eigenvalues for the first two principal components and the cluster analysis also corresponded well with PCA (principal component analysis) (nymphal mortality and BI). The molecular phylogeny could not draw any distinct relationship between physiological features, the virulence of B. bassiana strains with the host and location. The BI, PCA, and square Euclidean distance cluster were found the most useful tools for selecting potential entomopathogenic strains. The selected strains could be utilized for the management of the B. tabaci nymphal population in the field through the development of effective formulations. KEY POINTS: • 102 B. bassiana strains showed diversity in growth and virulence against B. tabaci. • Bioefficacy index, PCA, and SED group are efficient tools for selecting potential strains. • MTCC-4511, 4565, and 4543 chosen as the most virulent strains to kill whitefly nymphs.


Subject(s)
Beauveria , Gossypium , Hemiptera , Pest Control, Biological , Phylogeny , Beauveria/genetics , Beauveria/pathogenicity , Beauveria/classification , Beauveria/isolation & purification , Animals , Hemiptera/microbiology , Virulence , Gossypium/microbiology , Nymph/microbiology , Spores, Fungal/growth & development , Genetic Variation
2.
Neotrop Entomol ; 51(4): 600-612, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35680781

ABSTRACT

Entomopathogens (EPFs) are potential alternatives to chemical insecticides for managing Bemisia tabaci (Genn.), an invasive pest of the cotton crop. EPFs alone may not always provide enough insect pest control, but combining EPFs with pesticides, provided both components are compatible, can make an integrated pest management program considerably more effective. Hence, the bioefficacy of EPFs against whitefly, their compatibility with pesticides, and the factors responsible for determining compatibility were studied. The highest nymphal mortality was recorded with the Beauveria bassiana strains Bb-4511 (95.1%) and Bb-4565 (89.9%), and Metarhizium anisopliae Ma-1299 (86.7%) at 1 × 106 conidia ml-1. Lower LC50 values were observed for Cordyceps javanica Cj-089 and Bb-4511, 0.2 × 104 and 0.5 × 104 conidia ml-1, respectively. The toxicity index values in insecticide sensitivity assays ranged from 19.4 to 119.6% among all the EPFs. Comparatively, all the EPFs except Bb-4543 and Bb-4565 showed compatible to moderately toxic reactions to neonicotinoids and spinosyns. Organophosphates (ethion) and pyrethrins (bifenthrin) were toxic to very toxic to all the EPFs except Bb-4511, Fv-083, and Ma-1299. Cj-102 and Cj-089 were compatible with 50% of the average recommended dose of bifenthrin and ethion, and the average recommended dose for the field application of neonicotinoids and spinosyns. Principal component analysis showed that spore production and toxicity index values correlate with each other and are responsible for determining the EPF compatibility with insecticides. The EPF spore production and toxicity index are important factors for determining chemical compatibility. Compatible EPFs can be used individually or in combination as promising and compatible biological alternatives to insecticides in the management of whitefly in cotton.


Subject(s)
Hemiptera , Insecticides , Pesticides , Animals , Insecticides/pharmacology , Neonicotinoids , Nymph , Pest Control, Biological , Pesticides/pharmacology , Spores, Fungal
SELECTION OF CITATIONS
SEARCH DETAIL
...