Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Nat Commun ; 15(1): 3740, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702347

ABSTRACT

Insufficient functional ß-cell mass causes diabetes; however, an effective cell replacement therapy for curing diabetes is currently not available. Reprogramming of acinar cells toward functional insulin-producing cells would offer an abundant and autologous source of insulin-producing cells. Our lineage tracing studies along with transcriptomic characterization demonstrate that treatment of adult mice with a small molecule that specifically inhibits kinase activity of focal adhesion kinase results in trans-differentiation of a subset of peri-islet acinar cells into insulin producing ß-like cells. The acinar-derived insulin-producing cells infiltrate the pre-existing endocrine islets, partially restore ß-cell mass, and significantly improve glucose homeostasis in diabetic mice. These findings provide evidence that inhibition of the kinase activity of focal adhesion kinase can convert acinar cells into insulin-producing cells and could offer a promising strategy for treating diabetes.


Subject(s)
Acinar Cells , Diabetes Mellitus, Experimental , Insulin-Secreting Cells , Animals , Insulin-Secreting Cells/metabolism , Mice , Acinar Cells/metabolism , Male , Insulin/metabolism , Cell Transdifferentiation , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Mice, Inbred C57BL , Protein Kinase Inhibitors/pharmacology , Islets of Langerhans/metabolism
2.
J Hepatol ; 79(6): 1385-1395, 2023 12.
Article in English | MEDLINE | ID: mdl-37572794

ABSTRACT

BACKGROUND & AIMS: Biliary atresia (BA) is poorly understood and leads to liver transplantation (LT), with the requirement for and associated risks of lifelong immunosuppression, in most children. We performed a genome-wide association study (GWAS) to determine the genetic basis of BA. METHODS: We performed a GWAS in 811 European BA cases treated with LT in US, Canadian and UK centers, and 4,654 genetically matched controls. Whole-genome sequencing of 100 cases evaluated synthetic association with rare variants. Functional studies included whole liver transcriptome analysis of 64 BA cases and perturbations in experimental models. RESULTS: A GWAS of common single nucleotide polymorphisms (SNPs), i.e. allele frequencies >1%, identified intronic SNPs rs6446628 in AFAP1 with genome-wide significance (p = 3.93E-8) and rs34599046 in TUSC3 at sub-threshold genome-wide significance (p = 1.34E-7), both supported by credible peaks of neighboring SNPs. Like other previously reported BA-associated genes, AFAP1 and TUSC3 are ciliogenesis and planar polarity effectors (CPLANE). In gene-set-based GWAS, BA was associated with 6,005 SNPs in 102 CPLANE genes (p = 5.84E-15). Compared with non-CPLANE genes, more CPLANE genes harbored rare variants (allele frequency <1%) that were assigned Human Phenotype Ontology terms related to hepatobiliary anomalies by predictive algorithms, 87% vs. 40%, p <0.0001. Rare variants were present in multiple genes distinct from those with BA-associated common variants in most BA cases. AFAP1 and TUSC3 knockdown blocked ciliogenesis in mouse tracheal cells. Inhibition of ciliogenesis caused biliary dysgenesis in zebrafish. AFAP1 and TUSC3 were expressed in fetal liver organoids, as well as fetal and BA livers, but not in normal or disease-control livers. Integrative analysis of BA-associated variants and liver transcripts revealed abnormal vasculogenesis and epithelial tube formation, explaining portal vein anomalies that co-exist with BA. CONCLUSIONS: BA is associated with polygenic susceptibility in CPLANE genes. Rare variants contribute to polygenic risk in vulnerable pathways via unique genes. IMPACT AND IMPLICATIONS: Liver transplantation is needed to cure most children born with biliary atresia, a poorly understood rare disease. Transplant immunosuppression increases the likelihood of life-threatening infections and cancers. To improve care by preventing this disease and its progression to transplantation, we examined its genetic basis. We find that this disease is associated with both common and rare mutations in highly specialized genes which maintain normal communication and movement of cells, and their organization into bile ducts and blood vessels during early development of the human embryo. Because defects in these genes also cause other birth defects, our findings could lead to preventive strategies to lower the incidence of biliary atresia and potentially other birth defects.


Subject(s)
Biliary Atresia , Child , Animals , Mice , Humans , Biliary Atresia/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease , Zebrafish/genetics , Canada
3.
Sci Rep ; 13(1): 9113, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277426

ABSTRACT

Chronic pancreatitis is a debilitating disease affecting millions worldwide. These patients suffer from bouts of severe pain that are minimally relieved by pain medications and may necessitate major surgeries with high morbidity and mortality. Previously, we demonstrated that "chemical pancreatectomy," a pancreatic intraductal infusion of dilute acetic acid solution, ablated the exocrine pancreas while preserving the endocrine pancreas. Notably, chemical pancreatectomy resolved chronic inflammation, alleviated allodynia in the cerulein pancreatitis model, and improved glucose homeostasis. Herein, we extensively tested the feasibility of a chemical pancreatectomy in NHPs and validated our previously published pilot study. We did serial computed tomography (CT) scans of the abdomen and pelvis, analyzed dorsal root ganglia, measured serum enzymes, and performed histological and ultrastructural assessments and pancreatic endocrine function assays. Based on serial CT scans, chemical pancreatectomy led to the loss of pancreatic volume. Immunohistochemistry and transmission electron microscopy demonstrated exocrine pancreatic ablation with endocrine islet preservation. Importantly, chemical pancreatectomy did not increase pro-nociceptive markers in harvested dorsal root ganglia. Also, chemical pancreatectomy improved insulin secretion to supranormal levels in vivo and in vitro. Thus, this study may provide a foundation for translating this procedure to patients with chronic pancreatitis or other conditions requiring a pancreatectomy.


Subject(s)
Pancreatectomy , Pancreatitis, Chronic , Animals , Pancreatectomy/methods , Pilot Projects , Pancreatitis, Chronic/surgery , Primates , Pain , Chronic Disease
4.
Res Sq ; 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36945494

ABSTRACT

Chronic pancreatitis is a debilitating disease affecting millions worldwide. These patients suffer from bouts of severe pain that are minimally relieved by pain medications and may necessitate major surgeries with high morbidity and mortality. Previously, we demonstrated that "chemical pancreatectomy," a pancreatic intraductal infusion of dilute acetic acid solution, ablated the exocrine pancreas while preserving the endocrine pancreas. Notably, chemical pancreatectomy resolved chronic inflammation, alleviated allodynia in the cerulein pancreatitis model, and improved glucose homeostasis. Herein, we extensively tested the feasibility of a chemical pancreatectomy in NHPs and validated our previously published pilot study. We did serial computed tomography (CT) scans of the abdomen and pelvis, analyzed dorsal root ganglia, measured serum enzymes, and performed histological and ultrastructural assessments and pancreatic endocrine function assays.  Based on serial CT scans, chemical pancreatectomy led to the loss of pancreatic volume. Immunohistochemistry and transmission electron microscopy demonstrated exocrine pancreatic ablation with endocrine islet preservation. Importantly, chemical pancreatectomy did not increase pro-nociceptive markers in harvested dorsal root ganglia. Also, chemical pancreatectomy improved insulin secretion to supranormal levels in vivo and in vitro. Thus, this study may provide a foundation for translating this procedure to patients with chronic pancreatitis or other conditions requiring a pancreatectomy.

5.
Front Immunol ; 14: 1084056, 2023.
Article in English | MEDLINE | ID: mdl-36733483

ABSTRACT

The contribution of bone-marrow derived cells (BMCs) to a newly formed beta-cell population in adults is controversial. Previous studies have only used models of bone marrow transplantation from sex-mismatched donors (or other models of genetic labeling) into recipient animals that had undergone irradiation. This approach suffers from the significant shortcoming of the off-target effects of irradiation. Partial pancreatic duct ligation (PDL) is a mouse model of acute pancreatitis with a modest increase in beta-cell number. However, the possibility that recruited BMCs in the inflamed pancreas may convert into beta-cells has not been examined. Here, we used an irradiation-free model to track the fate of the BMCs from the donor mice. A ROSA-mTmG red fluorescent mouse was surgically joined to an INS1Cre knock-in mouse by parabiosis to establish a mixed circulation. PDL was then performed in the INS1Cre mice 2 weeks after parabiosis, which was one week after establishment of the stable blood chimera. The contribution of red cells from ROSA-mTmG mice to beta-cells in INS1Cre mouse was evaluated based on red fluorescence, while cell fusion was evaluated by the presence of green fluorescence in beta-cells. We did not detect any red or green insulin+ cells in the INS1Cre mice, suggesting that there was no contribution of BMCs to the newly formed beta-cells, either by direct differentiation, or by cell fusion. Thus, the contribution of BMCs to beta-cells in the inflamed pancreas should be minimal, if any.


Subject(s)
Bone Marrow , Pancreatitis , Mice , Animals , Acute Disease , Bone Marrow Cells , Pancreas
6.
Diabetes Obes Metab ; 24(9): 1721-1733, 2022 09.
Article in English | MEDLINE | ID: mdl-35546452

ABSTRACT

AIM: To show that depletion of pancreatic macrophages impairs gestational beta cell proliferation and leads to glucose intolerance. MATERIALS AND METHODS: Genetic animal models were applied to study the effects of depletion of pancreatic macrophges on gestational beta-cell proliferaiton and glucose response. The crosstalk between macrophages and beta-cells was studied in vivo using beta-cell-specific extracellular-signal-regulated kinase 5 (ERK5) knockout and epidermal growth receptor (EGFR) knockout mice, and in vitro using a co-culture system. RESULTS: Beta cell-derived placental growth factor (PlGF) recruited naïve macrophages and polarized them towards an M2-like phenotype. These macrophages then secreted epidermal growth factor (EGF), which activated extracellular signal-regulated kinase 5 (ERK5) signalling in beta cells to promote gestational beta cell proliferation. On the other hand, activation of ERK5 signalling in beta cells likely, in turn, enhanced the production and secretion of PlGF by beta cells. CONCLUSIONS: Our study shows a regulatory loop between macrophages and beta cells through PlGF/EGF/ERK5 signalling cascades to regulate gestational beta cell growth.


Subject(s)
Epidermal Growth Factor , Mitogen-Activated Protein Kinase 7 , Animals , Cell Proliferation , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Female , Macrophages/metabolism , Mice , Mitogen-Activated Protein Kinase 7/metabolism , Placenta Growth Factor/metabolism
7.
Biochem Soc Trans ; 49(6): 2539-2548, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34882233

ABSTRACT

Diabetes mellitus is a significant cause of morbidity and mortality in the United States and worldwide. According to the CDC, in 2017, ∼34.2 million of the American population had diabetes. Also, in 2017, diabetes was the seventh leading cause of death and has become the number one biomedical financial burden in the United States. Insulin replacement therapy and medications that increase insulin secretion and improve insulin sensitivity are the main therapies used to treat diabetes. Unfortunately, there is currently no radical cure for the different types of diabetes. Loss of ß cell mass is the end result that leads to both type 1 and type 2 diabetes. In the past decade, there has been an increased effort to develop therapeutic strategies to replace the lost ß cell mass and restore insulin secretion. α cells have recently become an attractive target for replacing the lost ß cell mass, which could eventually be a potential strategy to cure diabetes. This review highlights the advantages of using α cells as a source for generating new ß cells, the various investigative approaches to convert α cells into insulin-producing cells, and the future prospects and problems of this promising diabetes therapeutic strategy.


Subject(s)
Cell Transdifferentiation , Cell- and Tissue-Based Therapy , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 2/therapy , Animals , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/pathology , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Mice , Transcription Factors/metabolism
8.
J Vis Exp ; (175)2021 09 30.
Article in English | MEDLINE | ID: mdl-34661584

ABSTRACT

The pancreas is a bifunctional organ with both endocrine and exocrine components. A number of pathologies can afflict the pancreas, including diabetes, pancreatitis, and pancreatic cancer. All three of these diseases mark active areas of study, not only to develop immediate therapy, but also to better understand their pathophysiology. There are few tools to further these areas of study. Pancreatic duct infusion is an important technique that can allow for lineage tracing, gene introduction, and cell line-specific targeting. The technique requires the intricate dissection of the second portion of the duodenum and ampulla, followed by the occlusion of the bile duct and the cannulation of the pancreatic duct. Although the technique is technically challenging at first, the applications are myriad. Ambiguity in the specifics of the procedure between groups highlighted the need for a standard protocol. This work describes the expression of a green fluorescent protein (GFP) within the pancreas after the pancreatic duct infusion of a viral vector expressing GFP versus a sham surgery. The infusion and therefore expression is specific to the pancreas, without expression present in any other tissue type.


Subject(s)
Pancreatic Neoplasms , Pharmaceutical Preparations , Duodenum , Humans , Pancreas/surgery , Pancreatic Ducts
9.
J Biol Chem ; 297(5): 101235, 2021 11.
Article in English | MEDLINE | ID: mdl-34582892

ABSTRACT

Understanding signaling pathways that regulate pancreatic ß-cell function to produce, store, and release insulin, as well as pathways that control ß-cell proliferation, is vital to find new treatments for diabetes mellitus. Transforming growth factor-beta (TGF-ß) signaling is involved in a broad range of ß-cell functions. The canonical TGF-ß signaling pathway functions through intracellular smads, including smad2 and smad3, to regulate cell development, proliferation, differentiation, and function in many organs. Here, we demonstrate the role of TGF-ß/smad2 signaling in regulating mature ß-cell proliferation and function using ß-cell-specific smad2 null mutant mice. ß-cell-specific smad2-deficient mice exhibited improved glucose clearance as demonstrated by glucose tolerance testing, enhanced in vivo and ex vivo glucose-stimulated insulin secretion, and increased ß-cell mass and proliferation. Furthermore, when these mice were fed a high-fat diet to induce hyperglycemia, they again showed improved glucose tolerance, insulin secretion, and insulin sensitivity. In addition, ex vivo analysis of smad2-deficient islets showed that they displayed increased glucose-stimulated insulin secretion and upregulation of genes involved in insulin synthesis and insulin secretion. Thus, we conclude that smad2 could represent an attractive therapeutic target for type 2 diabetes mellitus.


Subject(s)
Hyperglycemia/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Signal Transduction , Smad2 Protein/metabolism , Animals , Diet, High-Fat/adverse effects , Hyperglycemia/chemically induced , Hyperglycemia/genetics , Mice , Mice, Knockout , Smad2 Protein/genetics
10.
Front Physiol ; 12: 658518, 2021.
Article in English | MEDLINE | ID: mdl-34366878

ABSTRACT

BACKGROUND: Ciliary defects cause heterogenous phenotypes related to mutation burden which lead to impaired development. A previously reported homozygous deletion in the Man1a2 gene causes lethal respiratory failure in newborn pups and decreased lung ciliation compared with wild type (WT) pups. The effects of heterozygous mutation, and the potential for rescue are not known. PURPOSE: We hypothesized that survival and lung ciliation, (a) would decrease progressively in Man1a2 +/- heterozygous and Man1a2 -/- null newborn pups compared with WT, and (b) could be enhanced by gestational treatment with N-Acetyl-cysteine (NAC), an antioxidant. METHODS: Man1a2+/- adult mice were fed NAC or placebo from a week before breeding through gestation. Survival of newborn pups was monitored for 24 h. Lungs, liver and tails were harvested for morphology, genotyping, and transcriptional profiling. RESULTS: Survival (p = 0.0001, Kaplan-Meier) and percent lung ciliation (p = 0.0001, ANOVA) measured by frequency of Arl13b+ respiratory epithelial cells decreased progressively, as hypothesized. Compared with placebo, gestational NAC treatment enhanced (a) lung ciliation in pups with each genotype, (b) survival in heterozygous pups (p = 0.017) but not in WT or null pups. Whole transcriptome of lung but not liver demonstrated patterns of up- and down-regulated genes that were identical in living heterozygous and WT pups, and completely opposite to those in dead heterozygous and null pups. Systems biology analysis enabled reconstruction of protein interaction networks that yielded functionally relevant modules and their interactions. In these networks, the mutant Man1a2 enzyme contributes to abnormal synthesis of proteins essential for lung development. The associated unfolded protein, hypoxic and oxidative stress responses can be mitigated with NAC. Comparisons with the developing human fetal lung transcriptome show that NAC likely restores normal vascular and epithelial tube morphogenesis in Man1a2 mutant mice. CONCLUSION: Survival and lung ciliation in the Man1a2 mutant mouse, and its improvement with N-Acetyl cysteine is genotype-dependent. NAC-mediated rescue depends on the central role for oxidative and hypoxic stress in regulating ciliary function and organogenesis during development.

11.
Exp Mol Med ; 53(4): 605-614, 2021 04.
Article in English | MEDLINE | ID: mdl-33820959

ABSTRACT

The adult pancreatic ductal system was suggested to harbor facultative beta-cell progenitors similar to the embryonic pancreas, and the appearance of insulin-positive duct cells has been used as evidence for natural duct-to-beta-cell reprogramming. Nevertheless, the phenotype and fate of these insulin-positive cells in ducts have not been determined. Here, we used a cell-tagging dye, CFDA-SE, to permanently label pancreatic duct cells through an intraductal infusion technique. Representing a time when significant increases in beta-cell mass occur, pregnancy was later induced in these CFDA-SE-treated mice to assess the phenotype and fate of the insulin-positive cells in ducts. We found that a small portion of CFDA-SE-labeled duct cells became insulin-positive, but they were not fully functional beta-cells based on the in vitro glucose response and the expression levels of key beta-cell genes. Moreover, these insulin-positive cells in ducts expressed significantly lower levels of genes associated with extracellular matrix degradation and cell migration, which may thus prevent their budding and migration into preexisting islets. A similar conclusion was reached through analysis of the Gene Expression Omnibus database for both mice and humans. Together, our data suggest that the contribution of duct cells to normal beta-cells in adult islets is minimal at best.


Subject(s)
Cell Movement , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Pancreatic Ducts/cytology , Animals , Biomarkers , Cell Differentiation , Computational Biology/methods , Extracellular Matrix , Female , Fluorescent Antibody Technique , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunophenotyping , Mice , Mice, Transgenic , Pregnancy
12.
Diabetes ; 70(7): 1508-1518, 2021 07.
Article in English | MEDLINE | ID: mdl-33906911

ABSTRACT

In contrast to the skin and the gut, where somatic stem cells and their niche are well characterized, a definitive pancreatic multipotent cell population in the adult pancreas has yet to be revealed. Of particular interest is whether such cells may be endogenous in patients with diabetes, and if so, can they be used for therapeutic purposes? In the current study, we used two separate reporter lines to target Cre-recombinase expression to the Lgr5- or glucagon-expressing cells in the pancreas. We provide evidence for the existence of a population of cells within and in the proximity of the ducts that transiently express the stem-cell marker Lgr5 during late gestational stages. Careful timing of tamoxifen treatment in Lgr5EGFP-IRES-CreERT2 ;R26 Tomato mice allowed us to show that these Lgr5-expressing progenitor cells can differentiate into α-cells during pregnancy. Furthermore, we report on a spontaneous lineage conversion of α- to ß-cells specifically after parturition. The contribution of Lgr5 progeny to the ß-cell compartment through an α-cell intermediate phase early after pregnancy appears to be part of a novel mechanism that would counterbalance against excessive ß-cell mass reduction during ß-cell involution.


Subject(s)
Cell Lineage , Glucagon-Secreting Cells/cytology , Insulin-Secreting Cells/cytology , Pancreas/cytology , Postpartum Period/metabolism , Receptors, G-Protein-Coupled/physiology , Stem Cells/cytology , Animals , Apoptosis , Cell Differentiation , Female , Mice , Mice, Inbred C57BL
13.
J Clin Invest ; 131(3)2021 02 01.
Article in English | MEDLINE | ID: mdl-33351784

ABSTRACT

Chronic pancreatitis affects over 250,000 people in the US and millions worldwide. It is associated with chronic debilitating pain, pancreatic exocrine failure, and high risk of pancreatic cancer and usually progresses to diabetes. Treatment options are limited and ineffective. We developed a new potential therapy, wherein a pancreatic ductal infusion of 1%-2% acetic acid in mice and nonhuman primates resulted in a nonregenerative, near-complete ablation of the exocrine pancreas, with complete preservation of the islets. Pancreatic ductal infusion of acetic acid in a mouse model of chronic pancreatitis led to resolution of chronic inflammation and pancreatitis-associated pain. Furthermore, acetic acid-treated animals showed improved glucose tolerance and insulin secretion. The loss of exocrine tissue in this procedure would not typically require further management in patients with chronic pancreatitis because they usually have pancreatic exocrine failure requiring dietary enzyme supplements. Thus, this procedure, which should be readily translatable to humans through an endoscopic retrograde cholangiopancreatography (ERCP), may offer a potential innovative nonsurgical therapy for chronic pancreatitis that relieves pain and prevents the progression of pancreatic diabetes.


Subject(s)
Acetic Acid/pharmacology , Pancreatectomy , Pancreatic Ducts , Pancreatitis, Chronic/therapy , Animals , Disease Models, Animal , Macaca fascicularis , Male , Mice , Mice, Transgenic
14.
Front Physiol ; 11: 538701, 2020.
Article in English | MEDLINE | ID: mdl-33192543

ABSTRACT

BACKGROUND/AIMS: Infectious and genetic factors are invoked, respectively in isolated biliary atresia (BA), or syndromic BA, with major extrahepatic anomalies. However, isolated BA is also associated with minor extrahepatic gut and cardiovascular anomalies and multiple susceptibility genes, suggesting common origins. METHODS: We investigated novel susceptibility genes with genome-wide association, targeted sequencing and tissue staining in BA requiring liver transplantation, independent of BA subtype. Candidate gene effects on morphogenesis, developmental pathways, and ciliogenesis, which regulates left-right patterning were investigated with zebrafish knockdown and mouse knockout models, mouse airway cell cultures, and liver transcriptome analysis. RESULTS: Single nucleotide polymorphisms in Mannosidase-1-α-2 (MAN1A2) were significantly associated with BA and with other polymorphisms known to affect MAN1A2 expression but were not differentially enriched in either BA subtype. In zebrafish embryos, man1a2 knockdown caused poor biliary network formation, ciliary dysgenesis in Kupffer's vesicle, cardiac and liver heterotaxy, and dysregulated egfra and other developmental genes. Suboptimal man1a2 knockdown synergized with suboptimal EGFR signaling or suboptimal knockdown of the EGFR pathway gene, adenosine-ribosylation-factor-6, which had minimal effects individually, to reproduce biliary defects but not heterotaxy. In cultured mouse airway epithelium, Man1a2 knockdown arrested ciliary development and motility. Man1a2 -/- mice, which experience respiratory failure, also demonstrated portal and bile ductular inflammation. Human BA liver and Man1a2 -/- liver exhibited reduced Man1a2 expression and dysregulated ciliary genes, known to cause multisystem human laterality defects. CONCLUSION: BA requiring transplantation associates with sequence variants in MAN1A2. man1a2 regulates laterality, in addition to hepatobiliary morphogenesis, by regulating ciliogenesis in zebrafish and mice, providing a novel developmental basis for multisystem defects in BA.

15.
Article in English | MEDLINE | ID: mdl-32144129

ABSTRACT

OBJECTIVE: Pancreatic beta cells proliferate in response to metabolic requirements during pregnancy, while failure of this response may cause gestational diabetes. A member of the vascular endothelial growth factor family, placental growth factor (PlGF), typically plays a role in metabolic disorder and pathological circumstance. The expression and function of PlGF in the endocrine pancreas have not been reported and are addressed in the current study. RESEARCH DESIGN AND METHODS: PlGF levels in beta cells were determined by immunostaining or ELISA in purified beta cells in non-pregnant and pregnant adult mice. An adeno-associated virus (AAV) serotype 8 carrying a shRNA for PlGF under the control of a rat insulin promoter (AAV-rat insulin promoter (RIP)-short hairpin small interfering RNA for PlGF (shPlGF)) was prepared and infused into mouse pancreas through the pancreatic duct to specifically knock down PlGF in beta cells, and its effects on beta-cell growth were determined by beta-cell proliferation, beta-cell mass and insulin release. A macrophage-depleting reagent, clodronate, was coapplied into AAV-treated mice to study crosstalk between beta cells and macrophages. RESULTS: PlGF is exclusively produced by beta cells in the adult mouse pancreas. Moreover, PlGF expression in beta cells was significantly increased during pregnancy. Intraductal infusion of AAV-RIP-shPlGF specifically knocked down PlGF in beta cells, resulting in compromised beta-cell proliferation, reduced growth in beta-cell mass and impaired glucose tolerance during pregnancy. Mechanistically, PlGF depletion in beta cells reduced islet infiltration of trophic macrophages, which appeared to be essential for gestational beta-cell growth. CONCLUSIONS: Our study suggests that increased expression of PlGF in beta cells may trigger gestational beta-cell growth through recruited macrophages.


Subject(s)
Insulin-Secreting Cells/metabolism , Placenta Growth Factor/metabolism , Animals , Cell Enlargement , Cell Proliferation , Female , Glucose/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy
16.
J Biol Chem ; 295(15): 4858-4869, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32122971

ABSTRACT

The interplay between the transforming growth factor ß (TGF-ß) signaling proteins, SMAD family member 2 (SMAD2) and 3 (SMAD3), and the TGF-ß-inhibiting SMAD, SMAD7, seems to play a vital role in proper pancreatic endocrine development and also in normal ß-cell function in adult pancreatic islets. Here, we generated conditional SMAD7 knockout mice by crossing insulin1Cre mice with SMAD7fx/fx mice. We also created a ß cell-specific SMAD7-overexpressing mouse line by crossing insulin1Dre mice with HPRT-SMAD7/RosaGFP mice. We analyzed ß-cell function in adult islets when SMAD7 was either absent or overexpressed in ß cells. Loss of SMAD7 in ß cells inhibited proliferation, and SMAD7 overexpression enhanced cell proliferation. However, alterations in basic glucose homeostasis were not detectable following either SMAD7 deletion or overexpression in ß cells. Our results show that both the absence and overexpression of SMAD7 affect TGF-ß signaling and modulates ß-cell proliferation but does not appear to alter ß-cell function. Reversible SMAD7 overexpression may represent an attractive therapeutic option to enhance ß-cell proliferation without negative effects on ß-cell function.


Subject(s)
Cell Proliferation , Insulin Secretion/drug effects , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/physiology , Insulin/physiology , Smad7 Protein/physiology , Transforming Growth Factor beta/metabolism , Animals , Female , Glucose/pharmacology , Male , Mice , Mice, Knockout , Signal Transduction , Sweetening Agents/pharmacology , Transforming Growth Factor beta/genetics
17.
Development ; 146(13)2019 06 27.
Article in English | MEDLINE | ID: mdl-31160417

ABSTRACT

The Cre/loxP system has been used extensively in mouse models with a limitation of one lineage at a time. Differences in function and other properties among populations of adult ß-cells is termed ß-cell heterogeneity, which was recently associated with diabetic phenotypes. Nevertheless, the presence of a developmentally derived ß-cell heterogeneity is unclear. Here, we have developed a novel dual lineage-tracing technology, using a combination of two recombinase systems, Dre/RoxP and Cre/LoxP, to independently trace green fluorescent Pdx1-lineage cells and red fluorescent Ptf1a-lineage cells in the developing and adult mouse pancreas. We detected a few Pdx1+/Ptf1a- lineage cells in addition to the vast majority of Pdx1+/Ptf1a+ lineage cells in the pancreas. Moreover, Pdx1+/Ptf1a+ lineage ß-cells had fewer Ki-67+ proliferating ß-cells, and expressed higher mRNA levels of insulin, Glut2, Pdx1, MafA and Nkx6.1, but lower CCND1 and CDK4 levels, compared with Pdx1+/Ptf1a- lineage ß-cells. Furthermore, more TSQ-high, SSC-high cells were detected in the Pdx1+Ptf1a+ lineage population than in the Pdx1+Ptf1a- lineage population. Together, these data suggest that differential activation of Ptf1a in the developing pancreas may correlate with this ß-cell heterogeneity.


Subject(s)
Cell Lineage , Cell Tracking/methods , Insulin-Secreting Cells/cytology , Pancreas/cytology , Stem Cells/cytology , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Separation/methods , Cells, Cultured , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Insulin-Secreting Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Imaging/methods , Organogenesis/genetics , Pancreas/embryology , Pancreas/growth & development , Pancreas/metabolism , Stem Cells/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Cell Stem Cell ; 22(1): 78-90.e4, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29304344

ABSTRACT

Successful strategies for treating type 1 diabetes need to restore the function of pancreatic beta cells that are destroyed by the immune system and overcome further destruction of insulin-producing cells. Here, we infused adeno-associated virus carrying Pdx1 and MafA expression cassettes through the pancreatic duct to reprogram alpha cells into functional beta cells and normalized blood glucose in both beta cell-toxin-induced diabetic mice and in autoimmune non-obese diabetic (NOD) mice. The euglycemia in toxin-induced diabetic mice and new insulin+ cells persisted in the autoimmune NOD mice for 4 months prior to reestablishment of autoimmune diabetes. This gene therapy strategy also induced alpha to beta cell conversion in toxin-treated human islets, which restored blood glucose levels in NOD/SCID mice upon transplantation. Hence, this strategy could represent a new therapeutic approach, perhaps complemented by immunosuppression, to bolster endogenous insulin production. Our study thus provides a potential basis for further investigation in human type 1 diabetes.


Subject(s)
Cellular Reprogramming , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/therapy , Genetic Therapy , Glucagon-Secreting Cells/pathology , Insulin-Secreting Cells/pathology , Alloxan , Animals , Blood Glucose , Dependovirus/metabolism , Gene Expression Profiling , Glucagon/metabolism , Glucagon-Secreting Cells/metabolism , Homeodomain Proteins/metabolism , Humans , Hyperglycemia/complications , Hyperglycemia/pathology , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Lectins, C-Type , Mice, Inbred C57BL , Mice, SCID , Receptors, Immunologic/metabolism , Trans-Activators/metabolism
19.
Sci Rep ; 7(1): 17539, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29235528

ABSTRACT

Multipotent epithelial cells with high Aldehyde dehydrogenase activity have been previously reported to exist in the adult pancreas. However, whether they represent true progenitor cells remains controversial. In this study, we isolated and characterized cells with ALDH activity in the adult mouse or human pancreas during physiological conditions or injury. We found that cells with ALDH activity are abundant in the mouse pancreas during early postnatal growth, pregnancy, and in mouse models of pancreatitis and type 1 diabetes (T1D). Importantly, a similar population of cells is found abundantly in healthy children, or in patients with pancreatitis or T1D. We further demonstrate that cells with ALDH activity can commit to either endocrine or acinar lineages, and can be divided into four sub-populations based on CD90 and Ecadherin expression. Finally, our in vitro and in vivo studies show that the progeny of ALDH1+/CD90-/Ecad- cells residing in the adult mouse pancreas have the ability to initiate Pancreatic and duodenal homeobox (Pdx1) expression for the first time. In summary, we provide evidence for the existence of a sortable population of multipotent non-epithelial cells in the adult pancreas that can commit to the pancreatic lineage following proliferation and mesenchymal to epithelial transition (MET).


Subject(s)
Pancreas/cytology , Pancreas/metabolism , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Aldehyde Dehydrogenase 1 Family , Animals , Cadherins/metabolism , Cell Differentiation , Gene Expression , Homeodomain Proteins/metabolism , Humans , Isoenzymes/metabolism , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Retinal Dehydrogenase/metabolism , Thy-1 Antigens/metabolism , Trans-Activators/metabolism
20.
Sci Rep ; 7(1): 16348, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180700

ABSTRACT

Autophagy is a major regulator of pancreatic beta cell homeostasis. Altered autophagic activity has been implicated in the beta cells of patients with type 2 diabetes, and in the beta cells of obese diabetic rodents. Here, we show that autophagy was induced in beta cells by either a high-fat diet or a combined high-fat and high-glucose diet, but not by high-glucose alone. However, a high-glucose intake alone did increase beta cell mass and insulin secretion moderately. Depletion of Atg7, a necessary component of the autophagy pathway, in beta cells by pancreatic intra-ductal AAV8-shAtg7 infusion in C57BL/6 mice, resulted in decreased beta cell mass, impaired glucose tolerance, defective insulin secretion, and increased apoptosis when a combined high-fat and high-glucose diet was given, seemingly due to suppression of autophagy. Taken together, our findings suggest that the autophagy pathway may act as a protective mechanism in pancreatic beta cells during a high-calorie diet.


Subject(s)
Autophagy , Dietary Fats/metabolism , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Animals , Apoptosis/drug effects , Autophagy/drug effects , Autophagy/genetics , Blood Glucose , Cell Line , Cell Size , Diet , Diet, High-Fat , Glucose/pharmacology , Glucose Tolerance Test , Insulin/metabolism , Insulin Resistance , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...