Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 37(8): 2228-2240, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32191325

ABSTRACT

Convergent evolution is pervasive in nature, but it is poorly understood how various constraints and natural selection limit the diversity of evolvable phenotypes. Here, we analyze the transcriptome across fruiting body development to understand the independent evolution of complex multicellularity in the two largest clades of fungi-the Agarico- and Pezizomycotina. Despite >650 My of divergence between these clades, we find that very similar sets of genes have convergently been co-opted for complex multicellularity, followed by expansions of their gene families by duplications. Over 82% of shared multicellularity-related gene families were expanding in both clades, indicating a high prevalence of convergence also at the gene family level. This convergence is coupled with a rich inferred repertoire of multicellularity-related genes in the most recent common ancestor of the Agarico- and Pezizomycotina, consistent with the hypothesis that the coding capacity of ancestral fungal genomes might have promoted the repeated evolution of complex multicellularity. We interpret this repertoire as an indication of evolutionary predisposition of fungal ancestors for evolving complex multicellular fruiting bodies. Our work suggests that evolutionary convergence may happen not only when organisms are closely related or are under similar selection pressures, but also when ancestral genomic repertoires render certain evolutionary trajectories more likely than others, even across large phylogenetic distances.


Subject(s)
Ascomycota/genetics , Basidiomycota/genetics , Biological Evolution , Fruiting Bodies, Fungal/genetics , Gene Expression Regulation, Developmental , Multigene Family
2.
Syst Biol ; 69(1): 17-37, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31062852

ABSTRACT

Resolving deep divergences in the tree of life is challenging even for analyses of genome-scale phylogenetic data sets. Relationships between Basidiomycota subphyla, the rusts and allies (Pucciniomycotina), smuts and allies (Ustilaginomycotina), and mushroom-forming fungi and allies (Agaricomycotina) were found particularly recalcitrant both to traditional multigene and genome-scale phylogenetics. Here, we address basal Basidiomycota relationships using concatenated and gene tree-based analyses of various phylogenomic data sets to examine the contribution of several potential sources of bias. We evaluate the contribution of biological causes (hard polytomy, incomplete lineage sorting) versus unmodeled evolutionary processes and factors that exacerbate their effects (e.g., fast-evolving sites and long-branch taxa) to inferences of basal Basidiomycota relationships. Bayesian Markov Chain Monte Carlo and likelihood mapping analyses reject the hard polytomy with confidence. In concatenated analyses, fast-evolving sites and oversimplified models of amino acid substitution favored the grouping of smuts with mushroom-forming fungi, often leading to maximal bootstrap support in both concatenation and coalescent analyses. On the contrary, the most conserved data subsets grouped rusts and allies with mushroom-forming fungi, although this relationship proved labile, sensitive to model choice, to different data subsets and to missing data. Excluding putative long-branch taxa, genes with high proportions of missing data and/or with strong signal failed to reveal a consistent trend toward one or the other topology, suggesting that additional sources of conflict are at play. While concatenated analyses yielded strong but conflicting support, individual gene trees mostly provided poor support for any resolution of rusts, smuts, and mushroom-forming fungi, suggesting that the true Basidiomycota tree might be in a part of tree space that is difficult to access using both concatenation and gene tree-based approaches. Inference-based assessments of absolute model fit strongly reject best-fit models for the vast majority of genes, indicating a poor fit of even the most commonly used models. While this is consistent with previous assessments of site-homogenous models of amino acid evolution, this does not appear to be the sole source of confounding signal. Our analyses suggest that topologies uniting smuts with mushroom-forming fungi can arise as a result of inappropriate modeling of amino acid sites that might be prone to systematic bias. We speculate that improved models of sequence evolution could shed more light on basal splits in the Basidiomycota, which, for now, remain unresolved despite the use of whole genome data.


Subject(s)
Basidiomycota/classification , Classification/methods , Models, Genetic , Phylogeny , Basidiomycota/genetics , Genes, Fungal/genetics
3.
Nat Commun ; 10(1): 4080, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31501435

ABSTRACT

Hyphae represent a hallmark structure of multicellular fungi. The evolutionary origins of hyphae and of the underlying genes are, however, hardly known. By systematically analyzing 72 complete genomes, we here show that hyphae evolved early in fungal evolution probably via diverse genetic changes, including co-option and exaptation of ancient eukaryotic (e.g. phagocytosis-related) genes, the origin of new gene families, gene duplications and alterations of gene structure, among others. Contrary to most multicellular lineages, the origin of filamentous fungi did not correlate with expansions of kinases, receptors or adhesive proteins. Co-option was probably the dominant mechanism for recruiting genes for hypha morphogenesis, while gene duplication was apparently less prevalent, except in transcriptional regulators and cell wall - related genes. We identified 414 novel gene families that show correlated evolution with hyphae and that may have contributed to its evolution. Our results suggest that hyphae represent a unique multicellular organization that evolved by limited fungal-specific innovations and gene duplication but pervasive co-option and modification of ancient eukaryotic functions.


Subject(s)
Fungi/cytology , Fungi/genetics , Genomics , Hyphae/cytology , Hyphae/genetics , Evolution, Molecular , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Fungal , Morphogenesis/genetics , Multigene Family , Phagocytosis/genetics , Phylogeny , Yeasts/genetics
4.
5.
Nat Ecol Evol ; 1(12): 1931-1941, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29085064

ABSTRACT

Armillaria species are both devastating forest pathogens and some of the largest terrestrial organisms on Earth. They forage for hosts and achieve immense colony sizes via rhizomorphs, root-like multicellular structures of clonal dispersal. Here, we sequenced and analysed the genomes of four Armillaria species and performed RNA sequencing and quantitative proteomic analysis on the invasive and reproductive developmental stages of A. ostoyae. Comparison with 22 related fungi revealed a significant genome expansion in Armillaria, affecting several pathogenicity-related genes, lignocellulose-degrading enzymes and lineage-specific genes expressed during rhizomorph development. Rhizomorphs express an evolutionarily young transcriptome that shares features with the transcriptomes of both fruiting bodies and vegetative mycelia. Several genes show concomitant upregulation in rhizomorphs and fruiting bodies and share cis-regulatory signatures in their promoters, providing genetic and regulatory insights into complex multicellularity in fungi. Our results suggest that the evolution of the unique dispersal and pathogenicity mechanisms of Armillaria might have drawn upon ancestral genetic toolkits for wood-decay, morphogenesis and complex multicellularity.


Subject(s)
Armillaria/genetics , Fungal Proteins/genetics , Genome, Fungal , Proteomics , Sequence Analysis, RNA , Species Specificity , Transcriptome
6.
PLoS One ; 8(8): e71248, 2013.
Article in English | MEDLINE | ID: mdl-24015186

ABSTRACT

Mycobacterium species are the source of a variety of infectious diseases in a range of hosts. Genome based methods are used to understand the adaptation of each pathogenic species to its unique niche. In this work, we report the comparison of pathogenic and non-pathogenic Mycobacterium genomes. Phylogenetic trees were constructed using sequence of core orthologs, gene content and gene order. It is found that the genome based methods can better resolve the inter-species evolutionary distances compared to the conventional 16S based tree. Phylogeny based on gene order highlights distinct evolutionary characteristics as compared to the methods based on sequence, as illustrated by the shift in the relative position of M. abscessus. This difference in gene order among the Mycobacterium species is further investigated using a detailed synteny analysis. It is found that while rearrangements between some Mycobacterium genomes are local within synteny blocks, few possess global rearrangements across the genomes. The study illustrates how a combination of different genome based methods is essential to build a robust phylogenetic relationship between closely related organisms.


Subject(s)
Genes, Bacterial , Mycobacterium/genetics , Bacterial Typing Techniques , Evolution, Molecular , Gene Order , Genome Size , Genome, Bacterial , Multilocus Sequence Typing , Phylogeny , Sequence Homology, Nucleic Acid , Species Specificity , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...