Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(24): 240802, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949362

ABSTRACT

Distributed quantum information in networks is paramount for global secure quantum communication. Moreover, it finds applications as a resource for relevant tasks, such as clock synchronization, magnetic field sensing, and blind quantum computation. For quantum network analysis and benchmarking of implementations, however, it is crucial to characterize the topology of networks in a way that reveals the nodes between which entanglement can be reliably distributed. Here, we demonstrate an efficient scheme for this topology certification. Our scheme allows for distinguishing, in a scalable manner, different networks consisting of bipartite and multipartite entanglement sources. It can be applied to semi-device-independent scenarios also, where the measurement devices and network nodes are not well characterized and trusted. We experimentally demonstrate our approach by certifying the topology of different six-qubit networks generated with polarized photons, employing active feed-forward and time multiplexing. Our methods can be used for general simultaneous tests of multiple hypotheses with few measurements, being useful for other certification scenarios in quantum technologies.

2.
Phys Rev Lett ; 129(15): 150501, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36269962

ABSTRACT

Multiphoton entangled quantum states are key to advancing quantum technologies such as multiparty quantum communications, quantum sensing, or quantum computation. Their scalable generation, however, remains an experimental challenge. Current methods for generating these states rely on stitching together photons from probabilistic sources, and state generation rates drop exponentially in the number of photons. Here, we implement a system based on active feed-forward and multiplexing that addresses this challenge. We demonstrate the scalable generation of four-photon and six-photon Greenberger-Horne-Zeilinger states, increasing generation rates by factors of 9 and 35, respectively. This is consistent with the exponential enhancement compared to the standard nonmultiplexed approach that is predicted by our theory. These results facilitate the realization of practical multiphoton protocols for photonic quantum technologies.

3.
Phys Rev Lett ; 129(26): 263601, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36608182

ABSTRACT

We report on nonlinear squeezing effects of polarization states of light by harnessing the intrinsic correlations from a polarization-entangled light source and click-counting measurements. Nonlinear Stokes operators are obtained from harnessing the click-counting theory in combination with angular-momentum-type algebras. To quantify quantum effects, theoretical bounds are derived for second- and higher-order moments of nonlinear Stokes operators. The experimental validation of our concept is rendered possible by developing an efficient source, using a spectrally decorrelated type-II phase-matched waveguide inside a Sagnac interferometer. Correlated click statistics and moments are directly obtained from an eight-time-bin quasi-photon-number-resolving detection system. Macroscopic Bell states that are readily available with our source show the distinct nature of nonlinear polarization squeezing in up to eighth-order correlations, matching our theoretical predictions. Furthermore, our data certify nonclassical correlations with high statistical significance, without the need to correct for experimental imperfections and limitations. Also, our nonlinear squeezing can identify nonclassicality of noisy quantum states which is undetectable with the known linear polarization-squeezing criterion.

4.
Opt Express ; 26(25): 32475-32490, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30645414

ABSTRACT

Entangled photon pair sources based on bulk optics are approaching optimal design and implementation, with high state fidelities, spectral purities and heralding efficiencies, but generally low brightness. Integrated entanglement sources, while providing higher brightness and low-power operation, often sacrifice performance in output state quality and coupling efficiency. Here we present a polarization-entangled pair source based on a hybrid approach of waveguiding and bulk optics, addressing every metric simultaneously. We show 96 % fidelity to the singlet state, 82 % Hong-Ou-Mandel interference visibility, 43 % average Klyshko efficiency, and a high brightness of 2.9 × 106 pairs/(mode·s·mW), while requiring only microwatts of pump power.

SELECTION OF CITATIONS
SEARCH DETAIL
...