Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 719, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862711

ABSTRACT

Estrogen Receptor α (ERα) is a major lineage determining transcription factor (TF) in mammary gland development. Dysregulation of ERα-mediated transcriptional program results in cancer. Transcriptomic and epigenomic profiling of breast cancer cell lines has revealed large numbers of enhancers involved in this regulatory program, but how these enhancers encode function in their sequence remains poorly understood. A subset of ERα-bound enhancers are transcribed into short bidirectional RNA (enhancer RNA or eRNA), and this property is believed to be a reliable marker of active enhancers. We therefore analyze thousands of ERα-bound enhancers and build quantitative, mechanism-aware models to discriminate eRNAs from non-transcribing enhancers based on their sequence. Our thermodynamics-based models provide insights into the roles of specific TFs in ERα-mediated transcriptional program, many of which are supported by the literature. We use in silico perturbations to predict TF-enhancer regulatory relationships and integrate these findings with experimentally determined enhancer-promoter interactions to construct a gene regulatory network. We also demonstrate that the model can prioritize breast cancer-related sequence variants while providing mechanistic explanations for their function. Finally, we experimentally validate the model-proposed mechanisms underlying three such variants.


Subject(s)
Breast Neoplasms , Enhancer Elements, Genetic , Estrogen Receptor alpha , Humans , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Gene Expression Regulation, Neoplastic , Transcription, Genetic , Gene Regulatory Networks , MCF-7 Cells , Promoter Regions, Genetic , Cell Line, Tumor
2.
Mol Cell Biol ; : 1-13, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867464

ABSTRACT

The human Origin Recognition Complex (ORC) is required not only for the initiation of DNA replication, but is also implicated in diverse cellular functions, including chromatin organization, centrosome biology, and cytokinesis. The smallest subunit of ORC, Orc6, is poorly conserved amongst eukaryotes. Recent studies from our laboratory have suggested that human Orc6 is not required for replication licensing, but is needed for S-phase progression. Further, ATR-dependent phosphorylation of Orc6 at T229 is implicated in DNA damage response during S-phase. In this study, we demonstrate that the CDK-dependent phosphorylation of Orc6 at T195 occurs during mitosis. While the phosphorylation at T195 does not seem to be required to exit mitosis, cells expressing the phosphomimetic T195E mutant of Orc6 impede S-phase progression. Moreover, the phosphorylated form of Orc6 associates with ORC more robustly, and Orc6 shows enhanced association with the ORC outside of G1, supporting the view that Orc6 may prevent the role of Orc1-5 in licensing outside of G1. Finally, Orc6 and the phosphorylated Orc6 localize to the nucleolar organizing centers and regulate ribosome biogenesis. Our results suggest that phosphorylated Orc6 at T195 prevents replication.

3.
Elife ; 132024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240312

ABSTRACT

Out of the several hundred copies of rRNA genes arranged in the nucleolar organizing regions (NOR) of the five human acrocentric chromosomes, ~50% remain transcriptionally inactive. NOR-associated sequences and epigenetic modifications contribute to the differential expression of rRNAs. However, the mechanism(s) controlling the dosage of active versus inactive rRNA genes within each NOR in mammals is yet to be determined. We have discovered a family of ncRNAs, SNULs (Single NUcleolus Localized RNA), which form constrained sub-nucleolar territories on individual NORs and influence rRNA expression. Individual members of the SNULs monoallelically associate with specific NOR-containing chromosomes. SNULs share sequence similarity to pre-rRNA and localize in the sub-nucleolar compartment with pre-rRNA. Finally, SNULs control rRNA expression by influencing pre-rRNA sorting to the DFC compartment and pre-rRNA processing. Our study discovered a novel class of ncRNAs influencing rRNA expression by forming constrained nucleolar territories on individual NORs.


Subject(s)
Nucleolus Organizer Region , RNA Precursors , Humans , Animals , Nucleolus Organizer Region/genetics , Nucleolus Organizer Region/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Chromosomes, Human/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Mammals/genetics
4.
Res Sq ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38234849

ABSTRACT

The IncRNA Malat1 was initially believed to be dispensable for physiology due to the lack of observable phenotypes in Malat1 knockout (KO) mice. However, our study challenges this conclusion. We found that both Malat1 KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis. Mechanistically, Malat1 acts as an intrinsic regulator in osteoblasts to promote osteogenesis. Interestingly, Malat1 does not directly affect osteoclastogenesis but inhibits osteoclastogenesis in a non-autonomous manner in vivo via integrating crosstalk between multiple cell types, including osteoblasts, osteoclasts and chondrocytes. Our findings substantiate the existence of a novel remodeling network in which Malat1 serves as a central regulator by binding to ß-catenin and functioning through the ß-catenin-OPG/Jagged1 pathway in osteoblasts and chondrocytes. In pathological conditions, Malat1 significantly promotes bone regeneration in fracture healing. Bone homeostasis and regeneration are crucial to well-being. Our discoveries establish a previous unrecognized paradigm model of Malat1 function in the skeletal system, providing novel mechanistic insights into how a lncRNA integrates cellular crosstalk and molecular networks to fine tune tissue homeostasis, remodeling and repair.

5.
Sci Data ; 10(1): 350, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268609

ABSTRACT

Most solid tumors become stiff with progression of cancer. Cancer Associated Fibroblasts (CAFs), most abundant stromal cells in the tumor microenvironment (TME), are known to mediate such stiffening. While the biochemical crosstalk between CAFs and cancer cells have been widely investigated, it is not clear if and how CAFs in stiffer TME promote metastatic progression. To gather insights into the process, we controlled the mechanical stiffness of the substrates and collected gene expression data with human colorectal CAFs. We cultured human primary CAFs on 2D polyacrylamide hydrogels with increasing elastic modulus (E) of 1, 10 and 40 kPa, and performed genome-wide transcriptome analyses in these cells to identify expression levels of ~16000 genes. The high-quality RNAseq results can be an excellent data-source for bioinformatic analysis for identifying novel pathways and biomarkers in cancer development and metastatic progression. With thorough analysis and accurate interpretation, this data may help researchers understand the role of mechanical stiffness of the TME in CAF-cancer cell crosstalk.


Subject(s)
Cancer-Associated Fibroblasts , Colorectal Neoplasms , Humans , Biomarkers , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Fibroblasts/metabolism , Gene Expression Profiling , Tumor Microenvironment/genetics
6.
Mol Cell Biol ; 43(4): 143-156, 2023.
Article in English | MEDLINE | ID: mdl-37096556

ABSTRACT

The smallest subunit of the human Origin Recognition Complex, hOrc6, is required for DNA replication progression and plays an important role in mismatch repair (MMR) during S-phase. However, the molecular details of how hOrc6 regulates DNA replication and DNA damage response remain to be elucidated. Orc6 levels are elevated upon specific types of genotoxic stress, and it is phosphorylated at Thr229, predominantly during S-phase, in response to oxidative stress. Many repair pathways, including MMR, mediate oxidative DNA damage repair. Defects in MMR are linked to Lynch syndrome, predisposing patients to many cancers, including colorectal cancer. Orc6 levels are known to be elevated in colorectal cancers. Interestingly, tumor cells show reduced hOrc6-Thr229 phosphorylation compared to adjacent normal mucosa. Further, elevated expression of wild-type and the phospho-dead forms of Orc6 results in increased tumorigenicity, implying that in the absence of this "checkpoint" signal, cells proliferate unabated. Based on these results, we propose that DNA-damage-induced hOrc6-pThr229 phosphorylation during S-phase facilitates ATR signaling in the S-phase, halts fork progression, and enables assembly of repair factors to mediate efficient repair to prevent tumorigenesis. Our study provides novel insights into how hOrc6 regulates genome stability.


Subject(s)
DNA Replication , Origin Recognition Complex , Humans , Phosphorylation , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , S Phase , Genomic Instability , DNA Damage
7.
Nat Commun ; 14(1): 551, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759613

ABSTRACT

Regulation of RNA processing contributes profoundly to tissue development and physiology. Here, we report that serine-arginine-rich splicing factor 1 (SRSF1) is essential for hepatocyte function and survival. Although SRSF1 is mainly known for its many roles in mRNA metabolism, it is also crucial for maintaining genome stability. We show that acute liver damage in the setting of targeted SRSF1 deletion in mice is associated with the excessive formation of deleterious RNA-DNA hybrids (R-loops), which induce DNA damage. Combining hepatocyte-specific transcriptome, proteome, and RNA binding analyses, we demonstrate that widespread genotoxic stress following SRSF1 depletion results in global inhibition of mRNA transcription and protein synthesis, leading to impaired metabolism and trafficking of lipids. Lipid accumulation in SRSF1-deficient hepatocytes is followed by necroptotic cell death, inflammation, and fibrosis, resulting in NASH-like liver pathology. Importantly, SRSF1-depleted human liver cancer cells recapitulate this pathogenesis, illustrating a conserved and fundamental role for SRSF1 in preserving genome integrity and tissue homeostasis. Thus, our study uncovers how the accumulation of detrimental R-loops impedes hepatocellular gene expression, triggering metabolic derangements and liver damage.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , RNA Splicing Factors/metabolism , Non-alcoholic Fatty Liver Disease/genetics , RNA/metabolism , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , RNA, Messenger/metabolism , Alternative Splicing
8.
Anal Chem ; 95(6): 3349-3357, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36574385

ABSTRACT

Cell cycle progression plays a vital role in regulating proliferation, metabolism, and apoptosis. Three-dimensional (3D) cell cultures have emerged as an important class of in vitro disease models, and incorporating the variation occurring from cell cycle progression in these systems is critical. Here, we report the use of Fourier transform infrared (FT-IR) spectroscopic imaging to identify subtle biochemical changes within cells, indicative of the G1/S and G2/M phases of the cell cycle. Following previous studies, we first synchronized samples from two-dimensional (2D) cell cultures, confirmed their states by flow cytometry and DNA quantification, and recorded spectra. We determined two critical wavenumbers (1059 and 1219 cm-1) as spectral indicators of the cell cycle for a set of isogenic breast cancer cell lines (MCF10AT series). These two simple spectral markers were then applied to distinguish cell cycle stages in a 3D cell culture model using four cell lines that represent the main stages of cancer progression from normal cells to metastatic disease. Temporal dependence of spectral biomarkers during acini maturation validated the hypothesis that the cells are more proliferative in the early stages of acini development; later stages of the culture showed stability in the overall composition but unique spatial differences in cells in the two phases. Altogether, this study presents a computational and quantitative approach for cell phase analysis in tissue-like 3D structures without any biomarker staining and provides a means to characterize the impact of the cell cycle on 3D biological systems and disease diagnostic studies using IR imaging.


Subject(s)
Spectroscopy, Fourier Transform Infrared , Humans , Spectroscopy, Fourier Transform Infrared/methods , Spectrophotometry, Infrared , Cell Cycle , Cell Division , MCF-7 Cells
9.
Proc Natl Acad Sci U S A ; 119(47): e2210516119, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36375054

ABSTRACT

Nearfield spectroscopic imaging techniques can be a powerful tool to map both cellular ultrastructure and molecular composition simultaneously but are currently limited in measurement capability. Resonance enhanced (RE) atomic force microscopy infrared (AFM-IR) spectroscopic imaging offers high-sensitivity measurements, for example, but probe-sample mechanical coupling, nonmolecular optical gradient forces, and noise overwhelm recorded chemical signals. Here, we analyze the key factors limiting AFM-IR measurements and propose an instrument design that enables high-sensitivity nanoscale IR imaging by combining null-deflection measurements with RE sensitivity. Our developed null-deflection scanning probe IR (NDIR) spectroscopic imaging provides ∼24× improvement in signal-to-noise ratio (SNR) compared with the state of the art, enables optimal signal recording by combining cantilever resonance with maximum laser power, and reduces background nonmolecular signals for improved analytical accuracy. We demonstrate the use of these properties for high-sensitivity, hyperspectral imaging of chemical domains in 100-nm-thick sections of cellular acini of a prototypical cancer model cell line, MCF-10A. NDIR chemical imaging enables facile recording of label-free, chemically accurate, high-SNR vibrational spectroscopic data from nanoscale domains, paving the path for routine studies of biomedical, forensic, and materials samples.


Subject(s)
Lasers , Spectrophotometry, Infrared/methods , Microscopy, Atomic Force/methods , Cell Line
10.
Proc Natl Acad Sci U S A ; 119(22): e2121406119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35622890

ABSTRACT

In eukaryotes, the origin recognition complex (ORC) is required for the initiation of DNA replication. The smallest subunit of ORC, Orc6, is essential for prereplication complex (pre-RC) assembly and cell viability in yeast and for cytokinesis in metazoans. However, unlike other ORC components, the role of human Orc6 in replication remains to be resolved. Here, we identify an unexpected role for hOrc6, which is to promote S-phase progression after pre-RC assembly and DNA damage response. Orc6 localizes at the replication fork and is an accessory factor of the mismatch repair (MMR) complex. In response to oxidative damage during S phase, often repaired by MMR, Orc6 facilitates MMR complex assembly and activity, without which the checkpoint signaling is abrogated. Mechanistically, Orc6 directly binds to MutSα and enhances the chromatin-association of MutLα, thus enabling efficient MMR. Based on this, we conclude that hOrc6 plays a fundamental role in genome surveillance during S phase.


Subject(s)
DNA Mismatch Repair , Origin Recognition Complex , S Phase , DNA-Binding Proteins/metabolism , Humans , MutL Proteins/metabolism , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , Protein Binding
11.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35217604

ABSTRACT

BEN domain-containing proteins are emerging rapidly as an important class of factors involved in modulating gene expression, yet the molecular basis of how they regulate chromatin function and transcription remains to be established. BEND3 is a quadruple BEN domain-containing protein that associates with heterochromatin and functions as a transcriptional repressor. We find that BEND3 is highly expressed in pluripotent cells, and the induction of differentiation results in the down-regulation of BEND3. The removal of BEND3 from pluripotent cells results in cells exhibiting upregulation of the differentiation-inducing gene expression signature. We find that BEND3 binds to the promoters of differentiation-associated factors and key cell cycle regulators, including CDKN1A, encoding the cell cycle inhibitor p21, and represses the expression of differentiation-associated genes by enhancing H3K27me3 decoration at these promoters. Our results support a model in which transcription repression mediated by BEND3 is essential for normal development and to prevent differentiation.


Subject(s)
Cell Differentiation/genetics , Pluripotent Stem Cells/cytology , Repressor Proteins/physiology , G-Quadruplexes , Gene Expression Regulation , Humans , Promoter Regions, Genetic
12.
Mamm Genome ; 33(2): 402-411, 2022 06.
Article in English | MEDLINE | ID: mdl-34436664

ABSTRACT

The nucleolus is the largest sub-nuclear domain, serving primarily as the place for ribosome biogenesis. A delicately regulated function of the nucleolus is vital to the cell not only for maintaining proper protein synthesis but is also tightly associated with responses to different types of cellular stresses. Recently, several long non-coding RNAs (lncRNAs) were found to be part of the regulatory network that modulate nucleolar functions. Several of these lncRNAs are encoded in the ribosomal DNA (rDNA) repeats or are transcribed from the genomic regions that are located near the nucleolus organizer regions (NORs). In this review, we first discuss the current understanding of the sequence of the NORs and variations between different NORs. We then focus on the NOR-derived lncRNAs in mammalian cells and their functions in rRNA transcription and the organization of nucleolar structure under different cellular conditions. The identification of these lncRNAs reveals great potential of the NORs in harboring novel genes involved in the regulation of nucleolar functions.


Subject(s)
Nucleolus Organizer Region , RNA, Long Noncoding , Animals , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Mammals/genetics , Nucleolus Organizer Region/genetics , Nucleolus Organizer Region/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription, Genetic
13.
Ann N Y Acad Sci ; 1506(1): 118-141, 2021 12.
Article in English | MEDLINE | ID: mdl-34791665

ABSTRACT

The human transcriptome contains many types of noncoding RNAs, which rival the number of protein-coding species. From long noncoding RNAs (lncRNAs) that are over 200 nucleotides long to piwi-interacting RNAs (piRNAs) of only 20 nucleotides, noncoding RNAs play important roles in regulating transcription, epigenetic modifications, translation, and cell signaling. Roles for noncoding RNAs in disease mechanisms are also being uncovered, and several species have been identified as potential drug targets. On May 11-14, 2021, the Keystone eSymposium "Noncoding RNAs: Biology and Applications" brought together researchers working in RNA biology, structure, and technologies to accelerate both the understanding of RNA basic biology and the translation of those findings into clinical applications.


Subject(s)
Congresses as Topic/trends , Epigenesis, Genetic/genetics , Gene Targeting/trends , RNA, Untranslated/administration & dosage , RNA, Untranslated/genetics , Research Report , Animals , Drug Delivery Systems/methods , Drug Delivery Systems/trends , Gene Targeting/methods , Humans , MicroRNAs/administration & dosage , MicroRNAs/genetics , RNA, Long Noncoding/administration & dosage , RNA, Long Noncoding/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA, Small Untranslated/administration & dosage , RNA, Small Untranslated/genetics , Signal Transduction/genetics
14.
Cancer Res ; 81(6): 1540-1551, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33472891

ABSTRACT

Innate immune defense mechanisms play a pivotal role in antitumor responses. Recent evidence suggests that antiviral innate immunity is regulated not only by exogenous non-self-RNA but also by host-derived pseudogene RNAs. A growing body of evidence also indicates a biological role for pseudogenes as gene expression regulators or immune modulators. Here, we report an important role for BRCA1P1, the pseudogene of the BRCA1 tumor-suppressor gene, in regulating innate immune defense mechanisms in breast cancer cells. BRCA1P1 expresses a long-noncoding RNA (lncRNA) in breast cancer cells through divergent transcription. Expression of lncRNA-BRCA1P1 is increased in breast tumors compared with normal breast tissues. Depletion of BRCA1P1 induces an antiviral defense-like program, including the expression of antiviral genes in breast cancer cells. Furthermore, BRCA1P1-deficient cancer cells mimic virus-infected cells by stimulating cytokines and inducing cell apoptosis. Accordingly, depletion of BRCA1P1 increases host innate immune responses and restricts virus replication. In converse, overexpression of BRCA1P1 reduces cytokine expression in breast cancer cells. Mechanistically, lncRNA-BRCA1P1 is localized in the nucleus, binds to the NF-κB subunit RelA, and negatively regulates antiviral gene expression. Finally, in a xenograft mouse model of breast cancer, depletion of BRCA1P1 stimulates cytokine expression and local immunity, and suppresses tumor growth. Our results suggest an important role for BRCA1P1 in innate immune defense mechanisms and antitumor responses. This mechanism of antiviral immunity regulated by a host-derived pseudogene RNA may guide the development of novel therapies targeting immune responses in breast cancer. SIGNIFICANCE: This study identifies a novel mechanism of innate immunity driven by a host pseudogene RNA that inhibits innate immune defense mechanisms and antitumor responses through regulation of antiviral gene expression.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Pseudogenes/physiology , RNA, Long Noncoding/metabolism , Tumor Escape/genetics , Animals , Breast/pathology , Breast/surgery , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Carcinoma, Ductal, Breast/immunology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Ductal, Breast/surgery , Cell Line, Tumor , Cell Nucleus/genetics , Cytokines/genetics , Female , Gene Expression Regulation, Neoplastic/immunology , Gene Knockout Techniques , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Innate/genetics , Mastectomy , Mice , Primary Cell Culture , RNA, Long Noncoding/genetics , Respirovirus Infections/immunology , Respirovirus Infections/virology , Sendai virus/immunology , Transcription Factor RelA/genetics , Xenograft Model Antitumor Assays
15.
Genes Dev ; 35(1-2): 102-116, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33334821

ABSTRACT

p53 is an intensely studied tumor-suppressive transcription factor. Recent studies suggest that the RNA-binding protein (RBP) ZMAT3 is important in mediating the tumor-suppressive effects of p53. Here, we globally identify ZMAT3-regulated RNAs and their binding sites at nucleotide resolution in intact colorectal cancer (CRC) cells. ZMAT3 binds to thousands of mRNA precursors, mainly at intronic uridine-rich sequences and affects their splicing. The strongest alternatively spliced ZMAT3 target was CD44, a cell adhesion gene and stem cell marker that controls tumorigenesis. Silencing ZMAT3 increased inclusion of CD44 variant exons, resulting in significant up-regulation of oncogenic CD44 isoforms (CD44v) and increased CRC cell growth that was rescued by concurrent knockdown of CD44v Silencing p53 phenocopied the loss of ZMAT3 with respect to CD44 alternative splicing, suggesting that ZMAT3-mediated regulation of CD44 splicing is vital for p53 function. Collectively, our findings uncover a p53-ZMAT3-CD44 axis in growth suppression in CRC cells.


Subject(s)
Alternative Splicing/genetics , Hyaluronan Receptors/genetics , RNA Splicing/genetics , RNA-Binding Proteins/metabolism , Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Gene Knockdown Techniques , Gene Silencing , HCT116 Cells , HEK293 Cells , Humans , Hyaluronan Receptors/metabolism , Protein Binding/genetics , RNA Precursors/metabolism , RNA-Binding Proteins/genetics , Tumor Suppressor Protein p53/metabolism
16.
Wiley Interdiscip Rev RNA ; 12(3): e1625, 2021 05.
Article in English | MEDLINE | ID: mdl-32945142

ABSTRACT

Long noncoding RNAs (lncRNAs) are RNA transcripts longer than 200 nucleotides that do not code for proteins. LncRNAs play crucial regulatory roles in several biological processes via diverse mechanisms and their aberrant expression is associated with various diseases. LncRNA genes are further subcategorized based on their relative organization in the genome. MicroRNA (miRNA)-host-gene-derived lncRNAs (lnc-MIRHGs) refer to lncRNAs whose genes also harbor miRNAs. There exists crosstalk between the processing of lnc-MIRHGs and the biogenesis of the encoded miRNAs. Although the functions of the encoded miRNAs are usually well understood, whether those lnc-MIRHGs play independent functions are not fully elucidated. Here, we review our current understanding of lnc-MIRHGs, including their biogenesis, function, and mechanism of action, with a focus on discussing the miRNA-independent functions of lnc-MIRHGs, including their involvement in cancer. Our current understanding of lnc-MIRHGs strongly indicates that this class of lncRNAs could play important roles in basic cellular events as well as in diseases. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.


Subject(s)
MicroRNAs , RNA, Long Noncoding , MicroRNAs/genetics , RNA, Long Noncoding/genetics
17.
Elife ; 92020 10 28.
Article in English | MEDLINE | ID: mdl-33112233

ABSTRACT

Long noncoding RNAs (lncRNAs) are often associated with polysomes, indicating coding potential. However, only a handful of endogenous proteins encoded by putative lncRNAs have been identified and assigned a function. Here, we report the discovery of a putative gastrointestinal-tract-specific lncRNA (LINC00675) that is regulated by the pioneer transcription factor FOXA1 and encodes a conserved small protein of 79 amino acids which we termed FORCP (FOXA1-Regulated Conserved Small Protein). FORCP transcript is undetectable in most cell types but is abundant in well-differentiated colorectal cancer (CRC) cells where it functions to inhibit proliferation, clonogenicity, and tumorigenesis. The epitope-tagged and endogenous FORCP protein predominantly localizes to the endoplasmic reticulum (ER). In response to ER stress, FORCP depletion results in decreased apoptosis. Our findings on the initial characterization of FORCP demonstrate that FORCP is a novel, conserved small protein encoded by a mis-annotated lncRNA that regulates apoptosis and tumorigenicity in well-differentiated CRC cells.


Subject(s)
Apoptosis/genetics , Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/pathology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Gastrointestinal Tract/metabolism , Genes, Reporter , Hepatocyte Nuclear Factor 3-alpha/genetics , Humans , Molecular Sequence Annotation , Organ Specificity , RNA, Long Noncoding/genetics
18.
Elife ; 92020 10 27.
Article in English | MEDLINE | ID: mdl-33108271

ABSTRACT

Cell cycle is a cellular process that is subject to stringent control. In contrast to the wealth of knowledge of proteins controlling the cell cycle, very little is known about the molecular role of lncRNAs (long noncoding RNAs) in cell-cycle progression. By performing genome-wide transcriptome analyses in cell-cycle-synchronized cells, we observed cell-cycle phase-specific induction of >2000 lncRNAs. Further, we demonstrate that an S-phase-upregulated lncRNA, SUNO1, facilitates cell-cycle progression by promoting YAP1-mediated gene expression. SUNO1 facilitates the cell-cycle-specific transcription of WTIP, a positive regulator of YAP1, by promoting the co-activator, DDX5-mediated stabilization of RNA polymerase II on chromatin. Finally, elevated SUNO1 levels are associated with poor cancer prognosis and tumorigenicity, implying its pro-survival role. Thus, we demonstrate the role of a S-phase up-regulated lncRNA in cell-cycle progression via modulating the expression of genes controlling cell proliferation.


Subject(s)
Cell Proliferation/genetics , Co-Repressor Proteins/genetics , Cytoskeletal Proteins/genetics , DEAD-box RNA Helicases/genetics , Gene Expression Regulation , RNA, Long Noncoding/genetics , Signal Transduction/physiology , Co-Repressor Proteins/metabolism , Cytoskeletal Proteins/metabolism , DEAD-box RNA Helicases/metabolism , HCT116 Cells , HeLa Cells , Humans , RNA, Long Noncoding/metabolism , S Phase , Up-Regulation
19.
Cell Cycle ; 19(21): 2927-2938, 2020 11.
Article in English | MEDLINE | ID: mdl-33044890

ABSTRACT

RFWD3 is an E3 ubiquitin ligase that plays important roles in DNA damage response and DNA replication. We have previously demonstrated that the stabilization of RFWD3 by PCNA at the replication fork enables ubiquitination of the single-stranded binding protein, RPA and its subsequent degradation for replication progression. Here, we report that RFWD3 associates with the Origin Recognition Complex (ORC) and ORC-Associated (ORCA/LRWD1), components of the pre-replicative complex required for the initiation of DNA replication. Overexpression of ORC/ORCA leads to the stabilization of RFWD3. Interestingly, RFWD3 seems to stabilize ORC/ORCA in cells expressing wild type p53, as the depletion of RFWD3 reduces the levels of ORC/ORCA. Further, the catalytic activity of RFWD3 is required for the stabilization of ORC. Our results indicate that the RFWD3 promotes the stability of ORC, enabling efficient pre-RC assembly.


Subject(s)
Origin Recognition Complex/genetics , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics , Cell Line , Cell Line, Tumor , Cell Nucleus/genetics , Chromatin/genetics , DNA Damage/genetics , DNA Replication/genetics , HEK293 Cells , Humans , Microtubule Proteins/genetics , Protein Binding/genetics , Ubiquitination/genetics
20.
RNA ; 26(11): 1603-1620, 2020 11.
Article in English | MEDLINE | ID: mdl-32675111

ABSTRACT

Cellular quiescence and cell cycle reentry regulate vital biological processes such as cellular development and tissue homeostasis and are controlled by precise regulation of gene expression. The roles of long noncoding RNAs (lncRNAs) during these processes remain to be elucidated. By performing genome-wide transcriptome analyses, we identify differential expression of several hundreds of lncRNAs, including a significant number of the less-characterized class of microRNA-host-gene (MIRHG) lncRNAs or lnc-MIRHGs, during cellular quiescence and cell cycle reentry in human diploid fibroblasts. We observe that MIR222HG lncRNA displays serum-stimulated RNA processing due to enhanced splicing of the host nascent pri-MIR222HG transcript. The pre-mRNA splicing factor SRSF1 negatively regulates the microprocessor-catalyzed cleavage of pri-miR-222, thereby increasing the cellular pool of the mature MIR222HG Association of SRSF1 to pri-MIR222HG, including to a mini-exon, which partially overlaps with the primary miR-222 precursor, promotes serum-stimulated splicing over microRNA processing of MIR222HG Further, we observe that the increased levels of spliced MIR222HG in serum-stimulated cells promote the cell cycle reentry post quiescence in a microRNA-independent manner. MIR222HG interacts with DNM3OS, another lncRNA whose expression is elevated upon serum-stimulation, and promotes cell cycle reentry. The double-stranded RNA binding protein ILF3/2 complex facilitates MIR222HG:DNM3OS RNP complex assembly, thereby promoting DNM3OS RNA stability. Our study identifies a novel mechanism whereby competition between the splicing and microprocessor machinery modulates the serum-induced RNA processing of MIR222HG, which dictates cell cycle reentry.


Subject(s)
Gene Expression Profiling/methods , Lung/cytology , RNA, Long Noncoding/genetics , Serine-Arginine Splicing Factors/metabolism , Serum/chemistry , Cell Cycle , Cell Line , Fibroblasts/chemistry , Fibroblasts/cytology , HEK293 Cells , Humans , Lung/chemistry , Nuclear Factor 45 Protein/metabolism , Nuclear Factor 90 Proteins/metabolism , RNA Processing, Post-Transcriptional , RNA Splicing , Sequence Analysis, RNA , Single Molecule Imaging , Up-Regulation , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...