Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 107(3-2): 035101, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37073032

ABSTRACT

Recent studies of elastocapillary phenomena have triggered interest in a basic variant of the classical Young-Laplace-Dupré (YLD) problem: the capillary interaction between a liquid drop and a thin solid sheet of low bending stiffness. Here we consider a two-dimensional model where the sheet is subjected to an external tensile load and the drop is characterized by a well-defined Young's contact angle θ_{Y}. Using a combination of numerical, variational, and asymptotic techniques, we discuss wetting as a function of the applied tension. We find that, for wettable surfaces with 0<θ_{Y}<π/2, complete wetting is possible below a critical applied tension due to the deformation of the sheet in contrast with rigid substrates requiring θ_{Y}=0. Conversely, for very large applied tensions, the sheet becomes flat and the classical YLD situation of partial wetting is recovered. At intermediate tensions, a vesicle forms in the sheet, which encloses most of the fluid, and we provide an accurate asymptotic description of this wetting state in the limit of small bending stiffness. We show that bending stiffness, however small, affects the entire shape of the vesicle. Rich bifurcation diagrams involving partial wetting and "vesicle" solution are found. For moderately small bending stiffnesses, partial wetting can coexist with both the vesicle solution and complete wetting. Finally, we identify a tension-dependent bendocapillary length, λ_{BC}, and find that the shape of the drop is determined by the ratio A/λ_{BC}^{2}, where A is the area of the drop.

2.
Elife ; 112022 10 10.
Article in English | MEDLINE | ID: mdl-36214457

ABSTRACT

The solution of complex problems by the collective action of simple agents in both biologically evolved and synthetically engineered systems involves cooperative action. Understanding the resulting emergent solutions requires integrating across the organismal behavior of many individuals. Here, we investigate an ecologically relevant collective task in black carpenter ants Camponotus pennsylvanicus: excavation of a soft, erodible confining corral. These ants show a transition from individual exploratory excavation at random locations to spatially localized collective exploitative excavation and escape from the corral. Agent-based simulations and a minimal continuum theory that coarse-grains over individual actions and considers their integrated influence on the environment leads to the emergence of an effective phase space of behaviors, characterized in terms of excavation strength and cooperation intensity. To test the theory over the range of both observed and predicted behaviors, we use custom-built robots (RAnts) that respond to stimuli to characterize the phase space of emergence (and failure) of cooperative excavation. Tuning the amount of cooperation between RAnts, allows us to vary the efficiency of excavation and synthetically generate the entire range of macroscopic phases predicted by our theory. Overall, our approach shows how the cooperative completion of tasks can arise from simple rules that involve the interaction of agents with a dynamically changing environment that serves as both an enabler and a modulator of behavior.


Subject(s)
Ants , Robotics , Animals , Humans
3.
Soft Matter ; 17(6): 1497-1504, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33355592

ABSTRACT

We study the wetting of a thin elastic filament floating on a fluid surface by a droplet of another, immiscible fluid. This quasi-2D experimental system is the lower-dimensional counterpart of the wetting and wrapping of a droplet by an elastic sheet. The simplicity of this system allows us to study the phenomenology of partial wetting and wrapping of the droplet by measuring angles of contact as a function of the elasticity of the filament, the applied tension and the curvature of the droplet. We find that a purely geometric theory gives a good description of the mechanical equilibria in the system. The estimates of applied tension and tension in the filament obey an elastic version of the Young-Laplace-Dupré relation. However, curvatures close to the contact line are not captured by the geometric theory, possibly because of 3D effects at the contact line. We also find that when a highly-bendable filament completely wraps the droplet, there is continuity of curvature at the droplet-filament interface, leading to seamless wrapping as observed in a 3D droplet.

SELECTION OF CITATIONS
SEARCH DETAIL
...