Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 212(5-6): 817-22, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11346956

ABSTRACT

When sucrose-phosphate synthase (SPS; EC 2.4.1.14) is expressed in tomato (Lycopersicon esculentum Mill.) from a ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) small subunit (rbcS) promoter, yields are often unchanged but when SPS is expressed from a Cauliflower Mosaic Virus 35S promoter, yield is enhanced up to 80%. Two explanations for this phenomenon are (i) that expression of SPS in tissues other than leaves accounts for the increased yield or (ii) that the lower level of expression directed by the 35S promoter is more beneficial than the high level of expression directed by the rbcS promoter. To test the first hypothesis, we conducted a reciprocal graft experiment, which showed that root SPS activity did not substantially affect growth. To test the second hypothesis, we conducted a field trial using a backcrossed, segregating, population of SPS-transformed plants derived from 35S and rbcS lines. The optimal dose of SPS activity for growth was approximately twice that of the wild type regardless of which promoter was used. The effect of SPS on growth was the result of a shift in partitioning of carbon among starch, sucrose, and ionic compounds (primarily amino acids), rather than of an increase in net photosynthesis. Excessive SPS activity resulted in a decreased rate of amino acid synthesis, which could explain the non-linear response of plant growth to the level of SPS expression.


Subject(s)
Glucosyltransferases/metabolism , Promoter Regions, Genetic , Solanum lycopersicum/enzymology , Amino Acids/biosynthesis , Gene Dosage , Gene Expression Regulation, Plant , Glucosyltransferases/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Oxygen/metabolism , Photosynthesis , Plant Leaves/growth & development , Plant Roots/enzymology , Plant Roots/growth & development , Plants, Genetically Modified , Ribulose-Bisphosphate Carboxylase/metabolism , Starch/analysis , Sucrose/analysis , Transgenes , Transplantation , Zea mays/enzymology , Zea mays/genetics
2.
Environ Sci Technol ; 35(3): 539-46, 2001 Feb 01.
Article in English | MEDLINE | ID: mdl-11351726

ABSTRACT

A technique of ligand exchange with DMG (dimethylglyoxime) and DPCSV was applied to determine Ni speciation in lake, river, and groundwater samples. The working conditions related to ligand-exchange equilibrium were optimized, and the ligand-exchange kinetics were examined. The observed pseudo-first-order rate, kobsd, was about 3 x 10(-5) (s-1) for Ni(DMG)2 complex formation with an excess of DMG (microM) over Ni (nM) at pH 7.1-7.7. The second-order exchange kinetic constants, kexch, were between 1.2 x 10(2) and 5.7 x 10(3) s-1 M-1 for ligand exchange of NiEDTA with DMG and between 5 x 10(2) and 7 x 10(3) s-1 M-1 for exchange of natural ligands with DMG in the freshwater samples under similar conditions. Ni ligand exchange between natural ligands and DMG occurred over days with half-lifes of 5-95 h. Total dissolved Ni concentrations in samples from various freshwater systems in Switzerland ranged from 4 nM in an oligotrophic lake to 30 nM in a small river affected by inputs from sewage effluents and agriculture. Free ionic Ni2+ concentrations were determined in the range of 10(-13)-10(-15) M (pNi = 12.2-14.7), indicating that more than 99.9% of dissolved Ni was bound by organic ligands with strong affinity (log K 12.1-14.9) and low concentrations (13-100 nM) at pH 7.2-8.2. Because of slow ligand-exchange kinetics, Ni speciation in natural waters may in many cases not reach equilibrium.


Subject(s)
Nickel/chemistry , Water Pollutants/analysis , Kinetics , Ligands , Models, Theoretical , Oximes , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...