Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bipolar Disord ; 23(1): 76-83, 2021 02.
Article in English | MEDLINE | ID: mdl-33037686

ABSTRACT

BACKGROUND: Bipolar Disorder (BD) is associated with a decrease in cellular resilience. Despite the half a century old discovery of lithium's efficacy for the treatment of BD, its exact mechanisms remain elusive. Accumulating data suggest that lithium's cytoprotective properties involve the modulation of several UPR proteins, such as GRP78. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum resident protein that regulates proteostasis through directly interacting with GRP78. The purpose of this study was to determine whether lithium increases MANF expression using cellular and rodent models and, if so, to elucidate the cellular mechanisms of action. PROCEDURE: Mouse striatal neuroblasts were treated with PBS, lithium, or lithium + Activator Protein-1 (AP-1) inhibitor for 24-72 hours. Once cells were harvested, mRNA was extracted. In vivo experiments included, intraperitoneal injections of lithium or saline to male Sprague Dawley rats twice daily for 14 consecutive days. Following drug treatment, brain tissue was isolated, and mRNA was extracted from various regions. MANF gene expression was measured using RT-qPCR. RESULTS: In vitro studies showed lithium-treated cells displayed a significant increase in MANF mRNA expression compared to controls. In contrast, cells treated with lithium and AP-1 inhibitor showed no increase in expression. Similarly, in vivo studies revealed that lithium-treated rats compared to controls had a significant increase in MANF expression in the PFC and striatum. CONCLUSION: Taken together, these data suggest that lithium's therapeutic mechanism involves the maintenance of ER homeostasis via increased MANF gene expression mediated by the AP-1 transcription factor.


Subject(s)
Bipolar Disorder , Lithium , Animals , Bipolar Disorder/drug therapy , Endoplasmic Reticulum , Endoplasmic Reticulum Chaperone BiP , Lithium/pharmacology , Male , Mice , Nerve Growth Factors , Rats , Rats, Sprague-Dawley , Transcription Factors
2.
Front Neurosci ; 12: 544, 2018.
Article in English | MEDLINE | ID: mdl-30147641

ABSTRACT

Neurotrophic factors (NTFs) are important for the development, function, and survival of neurons in the mammalian system. Mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) are two recently identified members of a novel family of NTFs in vertebrates that function to protect dopaminergic neurons. Although these genes are conserved across eukaryotes, their mechanism of neuroprotection is not fully understood. Sequence searches for MANF/CDNF homologs in invertebrates have identified a single ortholog that is most related to MANF. Here we report the in vivo characterization of the MANF gene, manf-1, in the nematode Caenorhabditis elegans. We found that manf-1 mutants have an accelerated, age-dependent decline in the survival of dopaminergic neurons. The animals also show increased endoplasmic reticulum (ER) stress, as revealed by reporter gene expression analysis of hsp-4, an ER chaperone BiP/GRP78 homolog, suggesting that a failure to regulate the ER unfolded protein response (ER-UPR) may be a contributing factor to dopaminergic neurodegeneration. Expression studies of manf-1 revealed that the gene is broadly expressed in a pattern that matches closely with hsp-4. Consistent with the requirements of manf-1 in the ER-UPR, we found that aggregates of α-Synuclein, a major constituent of Lewy bodies, were significantly increased in body wall muscles of manf-1 mutant animals. Overall, our work demonstrates the important role of manf-1 in dopaminergic neuronal survival and the maintenance of ER homeostasis in C. elegans.

3.
Int J Neuropsychopharmacol ; 21(6): 616-622, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29618019

ABSTRACT

Introduction: Due to the heterogeneity of psychiatric illnesses and overlapping mechanisms, patients with psychosis are differentially responsive to pharmaceutical drugs. In addition to having therapeutic effects for schizophrenia and bipolar disorder, antipsychotics and mood stabilizers have many clinical applications and are used unconventionally due to their direct and indirect effects on neurotransmitters. Synapsins, a family of neuronal phosphoproteins, play a key regulatory role in neurotransmitter release at synapses. In this study, we investigated the effects of mood stabilizers, lithium, and valproic acid on synapsin gene expression in the rat brain. Methods: Intraperitoneal injections of saline, lithium, and valproic acid were administered to male Sprague Dawley rats twice daily for 14 d, corresponding to their treatment group. Following decapitation and brain tissue isolation, mRNA was extracted from various brain regions including the hippocampus, striatum, prefrontal cortex, and frontal cortex. Results: Biochemical analysis revealed that lithium significantly increased gene expression of synapsin I in the striatum, synapsin IIa in the hippocampus and prefrontal cortex, and synapsin IIb in the hippocampus and striatum. Valproic acid significantly increased synapsin IIa in the hippocampus and prefrontal cortex, as well as synapsin IIb in the hippocampus and striatum. Conclusion: These significant changes in synapsin I and II expression may implicate a common transcription factor, early growth response 1, in its mechanistic pathway. Overall, these results elucidate mechanisms through which lithium and valproic acid act on downstream targets compared with antipsychotics and provide deeper insight on the involvement of synaptic proteins in treating neuropsychiatric illnesses.


Subject(s)
Brain/drug effects , Lithium Compounds/pharmacology , Psychotropic Drugs/pharmacology , Synapsins/metabolism , Valproic Acid/pharmacology , Animals , Brain/metabolism , Gene Expression/drug effects , Lithium Compounds/blood , Male , Psychotropic Drugs/blood , RNA, Messenger/pharmacology , Random Allocation , Rats, Sprague-Dawley , Valproic Acid/blood , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...