Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biochem Biotechnol ; 196(1): 332-349, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37129740

ABSTRACT

Endophytic fungi live symbiotically inside plants and are hidden source of natural bioactive molecules. The present study was carried out to investigate the phytochemical analysis and antioxidant activity of endophytic fungi isolated from the ethnomedicinal plant Dillenia indica L. The ethyl acetate crude extracts of the endophytic fungal strains were preliminarily evaluated for their phytochemical analysis, and the results showed the presence of alkaloids, flavonoids, phenolics, terpene, and saponins. The crude extracts of more than 60% of the isolates showed 50-90% antioxidant activity by DPPH and H2O2 assay. The inhibition percentage of ethyl acetate extracts ranges from 34.05 to 91.5%, whereas IC50 values vary from 72.2 to 691.14%. Among all the strains, Fomitopsis meliae crude extract showed a maximum inhibition percentage, i.e., 91.5%, with an IC50 value of 88.27 µg/mL. Chaetomium globosum showed significant activity having an inhibition percentage of 89.88% and an IC50 value of 74.44 µg/mL. The total phenolic and flavonoid content in the crude extract of Chaetomium globosum was 37.4 mg gallic acid equivalent (GAE)/g DW and 31.0 mg quercetin equivalent (GAE)/g DW. GC-MS analysis of crude extract of C. globosum revealed different compounds, such as squalene; butanoic acid, 2-methyl-; hexadecanoic acid; 2-propanone, 1-phenyl-; 5-oxo-pyrrolidine-2-carboxylic acid methyl ester; 9,12-octadecadienoic acid (z)- etc. Many of these belong to phenolics, which are natural antioxidant compounds. The findings suggested that endophytic fungi associated with Dillenia indica L. can be a potential source of novel antioxidant compounds.


Subject(s)
Acetates , Chaetomium , Dilleniaceae , Antioxidants/chemistry , Plant Extracts/chemistry , Hydrogen Peroxide , Phytochemicals/pharmacology , Flavonoids/chemistry , Phenols/chemistry , Fungi , Gallic Acid
2.
Microorganisms ; 11(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37374937

ABSTRACT

In this study, white-rot fungus, Rigidoporus vinctus, collected from an unidentified fallen twig from Pathankot, Punjab, India, was used for biosorption of anionic Congo red and cationic Methylene blue dyes from an aqueous medium. The biosorption efficiency of the live biomass of Rigidoporus vinctus was investigated to optimize biosorbent dosage, process time, concentrations of dyes, and pH of solutions. The results indicated that Rigidoporus vinctus is more efficient than other reported bio-adsorbents for Congo red and Methylene blue dyes. The maximum biosorption activity of Rigidoporus vinctus for Congo red was found at pH 2, and that for Methylene blue was at pH 10, after 24 h of the reaction period. The process followed pseudo-second-order kinetics, which indicated that the interaction of both dyes to the adsorption sites on the surface of Rigidoporus vinctus was responsive to biosorption. The biosorption process could be well explained by the Langmuir isotherm for both dyes. The maximum monolayer biosorption capacity of Rigidoporus vinctus for Congo red and Methylene blue was observed to be 54.0 mg/g and 80.6 mg/g, respectively. The seed germination test was carried out, and it was assessed that the toxicity of dyes was reduced up to significant levels. Based on the present experimental findings, it can be concluded that biosorption using the live biomass of Rigidoporus vinctus can effectively decolorize dye-containing wastewater, thus reducing the hazardous effects of dyes on human beings.

3.
Folia Microbiol (Praha) ; 68(2): 219-229, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36205912

ABSTRACT

Plants form associations with different microbes; some promote their growth and protect from biotic and abiotic stresses in different ways. However, the biological role of fungi associated with the rhizosphere of medicinal plants is not well explored. In the present study, Colletotrichum gloeosporioides, and Aspergillus fumigatus isolated from the rhizosphere of Dillenia indica were screened for their phosphate solubilization and indole-3-acetic acid (IAA) production potential. The selected fungal strains were identified by macroscopic, microscopic, and molecular characteristics. Phosphate solubilization was qualitatively and quantitatively evaluated using Pikovskaya's (PVK) agar and PVK broth medium using different substrates such as AlPO4, Ca3(PO4)2, and FePO4. Colletotrichum gloeosporioides and Aspergillus fumigatus with respect to the phosphate source showed solubilization index (SI) of 1.7 ± 0.03 and 2.1 ± 0.04, and solubilized phosphate up to 138.8 ± 0.058 µg/mL and 121.6 ± 0.062 µg/mL. These fungal strains are also good producers of IAA and significantly enhance the growth of Vigna radiata and Cicer arietinum seedlings. This is the first report on A. fumigatus and C. gloeosporioides from the rhizosphere of Dillenia indica and their phosphate solubilization and IAA production ability.


Subject(s)
Colletotrichum , Dilleniaceae , Phosphates/chemistry , Aspergillus fumigatus , Rhizosphere , Soil Microbiology
4.
Arch Microbiol ; 204(6): 341, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35593972

ABSTRACT

Endophytes are microbes that live inside the tissues of plants without causing any disease. Many of these belonging to fungi have been exploited earlier for their biological activities. This study focused on the exploration and characterization of culturable endophytic fungi inhabiting the medicinal plant Dillenia indica L. during four different seasons (summer, monsoon, autumn, and winter) from 2018 to 2019. A total of 2360 segments from different parts (leaves, fruits, and stem) were screened to isolate endophytic fungi. During the study, 25 species of fungi belonging to 20 genera were isolated from the selected plant. The identification of these fungi was validated at morphological, microscopic, and molecular levels. Results indicate the plant has the highest affinity for Daldinia eschscholtzii, followed by Colletotrichum gloeosporioides and Cladosporium cladosporioides. Further, the percent frequency was highest in leaves, followed by stem and fruits. The results were further supported by a similar trend of colonization rate for different plant parts. The monsoon season had the highest number of isolates (312), followed by summer (208), winter (164), and autumn (114). Species diversity was highest during the monsoon season and lowest during the winter. These fungi also produce amylase, lipase, protease, asparaginase, cellulase, and ligninolytic enzymes. This study focused only on culturable fungal endophytes, yet the scope can be extended for other non-culturable microbes and their interaction by using high-throughput genomics and novel next-generation sequencing (NGS) tools. The results indicate that Dillenia indica L. harbors novel endophytic fungi having industrial applications.


Subject(s)
Dilleniaceae , Plants, Medicinal , Endophytes , Fungi , Plant Leaves/microbiology , Plants, Medicinal/microbiology , Seasons
5.
J Environ Manage ; 228: 130-139, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30216827

ABSTRACT

The scarcity of available drinking water has led the researchers to develop novel and cost-effective ways of bioremediation process for wastewater treatment. Bioremediation is a cost-effective and environmentally sound method for the removal of toxic compounds. Such approach is not only a chemical-less effort but also an energy savior. In the present work Phlebia acerina, a white rot wood rotting fungi have been used to degrade the toxic wastewater pollutants. Congo Red (CR) and Eriochrome Black T (EBT) have been selected as model pollutants to test the wastewater cleaning ability of the fungus. The Lignin modifying enzyme (LME) and Cellulolytic enzyme assays (CMC) potential of Phlebia acerina helped in understanding the dye degradation mechanism. Under the optimum conditions, the fungi was able to degrade as high as 92.4% CR while the EBT was degraded to a maximum of 50%. Phlebia acerina was found to show first-order kinetics of dyes degradation. Further, the seed germination and antimicrobial assay of treated and untreated water were carried out in order to establish the formation of non-toxic end product after degradation.


Subject(s)
Basidiomycota/metabolism , Fungi/metabolism , Azo Compounds , Biodegradation, Environmental , Coloring Agents/metabolism , Congo Red , Environmental Pollutants/metabolism , Lignin/metabolism , Wastewater , Wood/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...