Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731288

ABSTRACT

The Italian pig sector requires heavy pigs (raised for at least nine months and slaughtered at >160 kg). In order to avoid boar taint and lower the impact on welfare, immunocastration provides an alternative to surgical castration. This study investigated the effects of immunocastration compared to surgical castration on the chemical composition and fatty acid profile of loins (longissimus dorsi muscle) and adipose tissue in Italian heavy pigs raised for dry-cured ham. Twenty-four male pigs were subjected to surgical castration (n = 12) or immunocastration (n = 12). Carcass parameters were monitored at slaughter, and samples of longissimus dorsi muscle and subcutaneous fat were analysed. This study showed no significant differences in carcass characteristics and proximate composition of fresh meat. However, variations were observed in the fatty acid profiles of meat and adipose tissue between groups. Notably, saturated fatty acids, particularly stearic acid (18:0), were higher in the intramuscular fat (IMF) of the immunocastrated pigs compared to the surgically castrated pigs. Conversely, monounsaturated fatty acids, predominantly oleic acid (18:1n-9), were higher in the IMF from the surgically castrated pigs compared to the immunocastrated pigs. While immunocastration may offer benefits in terms of animal growth and carcass composition, it could lead to unfavourable lipid changes in fresh loin meat for Italian heavy pigs.

2.
Biomolecules ; 12(8)2022 08 04.
Article in English | MEDLINE | ID: mdl-36008969

ABSTRACT

The consequences of aging and disease conditions in tissues involve reactive oxygen species (ROS) and related molecular alterations of different cellular compartments. We compared a murine model of immunodeficient (SCID) xenografted young (4 weeks old) and old (17 weeks old) mice with corresponding controls without tumor implantation and carried out a compositional evaluation of brain tissue for changes in parallel DNA and lipids compartments. DNA damage was measured by four purine 5',8-cyclo-2'-deoxynucleosides, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), and 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxo-dA). In brain lipids, the twelve most representative fatty acid levels, which were mostly obtained from the transformation of glycerophospholipids, were followed up during the aging and disease progressions. The progressive DNA damage due to age and tumoral conditions was confirmed by raised levels of 5'S-cdG and 5'S-cdA. In the brain, the remodeling involved a diminution of palmitic acid accompanied by an increase in arachidonic acid, along both age and tumor progressions, causing increases in the unsaturation index, the peroxidation index, and total TFA as indicators of increased oxidative and free radical reactivity. Our results contribute to the ongoing debate on the central role of DNA and genome instability in the aging process, and on the need for a holistic vision, which implies choosing the best biomarkers for such monitoring. Furthermore, our data highlight brain tissue for its lipid remodeling response and inflammatory signaling, which seem to prevail over the effects of DNA damage.


Subject(s)
Fatty Acids , Neoplasms , 8-Hydroxy-2'-Deoxyguanosine , Aging , Animals , Brain , DNA , DNA Damage , Mice , Mice, SCID , Neoplasms/genetics , Purines
3.
Animals (Basel) ; 13(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36611618

ABSTRACT

Fatty acid-based lipidomic analysis has been widely used to evaluate health status in human medicine as well as in the veterinary field. In equine species, there has been a developing interest in fertility and sperm quality. Fatty acids, being the principal components of the membranes, play an active role in the regulation of the metabolic activities, and their role on spermiogenesis seems to be of great importance for the resulting quality of the sperm and, thus, fertility. With the application of widely used lipidomic techniques, the aim of this study was to evaluate: (a) the fatty acid content of the spermatozoa's membranes of 26 healthy male Martina Franca donkeys and its possible correlation with sperm parameters, and (b) the evaluation of the composition of the red blood cells' membrane. PUFA omega-6 are the principal components (40.38%) of the total PUFA content (47.79%) in both types of cells; however, DPA is the predominant one on the spermatozoa's membrane (27.57%) but is not present in the erythrocyte's membrane. Spermatozoa's motility (%) is positively correlated with stearic acid and EPA, and progressive motility (%), with oleic acid. These findings offer information on the composition of both types of cells' membranes in healthy male MF donkeys and reflect the metabolic transformations of the spermatozoa's membrane during the maturation period, providing a better perception of the role of fatty acids in sperm parameters and fertility.

4.
Animals (Basel) ; 11(9)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34573570

ABSTRACT

Canine chronic enteropathies (CEs) are inflammatory processes resulting from complex interplay between the mucosal immune system, intestinal microbiome, and dietary components in susceptible dogs. Fatty acids (FAs) play important roles in the regulation of physiologic and metabolic pathways and their role in inflammation seems to be dual, as they exhibit pro-inflammatory and anti-inflammatory functions. Analysis of red blood cell (RBC) membrane fatty acid profile represents a tool for assessing the quantity and quality of structural and functional molecular components. This study was aimed at comparing the FA membrane profile, determined by Gas Chromatography and relevant lipid parameter of 48 CE dogs compared with 68 healthy dogs. In CE patients, the levels of stearic (p < 0.0001), dihomo-gamma-linolenic, eicosapentaenoic (p = 0.02), and docosahexaenoic (p = 0.02) acids were significantly higher, and those of palmitic (p < 0.0001) and linoleic (p = 0.0006) acids were significantly lower. Non-responder dogs presented higher percentages of vaccenic acid (p = 0.007), compared to those of dogs that responded to diagnostic trials. These results suggest that lipidomic status may reflect the "gut health", and the non-invasive analysis of RBC membrane might have the potential to become a candidate biomarker in the evaluation of dogs affected by CE.

5.
Front Vet Sci ; 7: 502, 2020.
Article in English | MEDLINE | ID: mdl-32974399

ABSTRACT

Molecular-based approaches are rapidly developing in medicine for the evaluation of physiological and pathological conditions and discovery of new biomarkers in prevention and therapy. Fatty acid diversity and roles in health and disease in humans are topical subjects of lipidomics. In particular, membrane fatty acid-based lipidomics provides molecular data of relevance in the study of human chronic diseases, connecting metabolic, and nutritional aspects to health conditions. In veterinary medicine, membrane lipidomics, and fatty acid profiles have not been developed yet in nutritional approaches to health and in disease conditions. Using a protocol widely tested in human profiling, in the present study erythrocyte membrane lipidome was examined in 68 clinically healthy dogs, with different ages, sex, and sizes. In particular, a cluster composed of 10 fatty acids, present in membrane glycerophospholipids and representative of structural and functional properties of cell membrane, was chosen, and quantitatively analyzed. The interval values and distribution for each fatty acid of the cluster were determined, providing the first panel describing the healthy dog lipidomic membrane profile, with interesting correlation to bodyweight increases. This molecular information can be advantageously developed as benchmark in veterinary medicine for the evaluation of metabolic and nutritional status in healthy and diseased dogs.

6.
Biochim Biophys Acta Biomembr ; 1859(10): 1967-1973, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28688796

ABSTRACT

Apolipoprotein E (apoE) is a major lipid carrier of the lipoprotein transport system that plays critical roles in various pathologies. Human apoE has three common isoforms, the apoE4 being associated with Alzheimer's disease. This is the first study in the literature investigating the effects of apoE (apoE3 and apoE4 isoforms) on membrane fatty acid profile in neuroblastoma SK-N-SH cells. Fatty acid analyses were carried out by gas chromatography of the corresponding methyl esters (FAME). We observed the occurrence of membrane fatty acid remodeling in the presence of each of the two apoE isoforms. ApoE3 increased the membrane level of stearic acid and dihomo-gamma-linolenic acid (DGLA), whereas apoE4 had opposite effects. Both apoE3 and apoE4 increased saturated and monounsaturated fatty acids (SFA and MUFA), omega-6/omega-3 ratio and decreased total polyunsaturated fatty acid (PUFA) amount, but with various intensities. Moreover, both apoE isoforms decreased membrane homeostasis indexes such as PUFA balance, unsaturation index and peroxidation index. Our results highlight membrane property changes connected to the apoE isoforms suggesting membrane lipidomics to be inserted in further model studies of apolipoproteins in health and disease.


Subject(s)
Apolipoprotein E4/metabolism , Fatty Acids, Monounsaturated/metabolism , Fatty Acids/metabolism , Membranes/metabolism , Neuroblastoma/metabolism , 8,11,14-Eicosatrienoic Acid/metabolism , Alzheimer Disease/metabolism , Apolipoprotein E3 , Cell Line, Tumor , Homeostasis/physiology , Humans , Protein Isoforms/metabolism , Stearic Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...