Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35808766

ABSTRACT

Commercial filaments of poly(lactic acid) (PLA) composites with particulate filler, carbon fiber, and copper powder with different contents were fabricated by FDM 3D printing in XZ-direction at bed temperatures of 45 °C and 60 °C. The effects of additives and bed temperatures on layer adhesion, fracture behavior, and mechanical performance of the PLA composites 3D printing were evaluated. Rheological properties informed viscous nature of all filaments and interface bonding in the PLA composites, which improved printability and dimensional stability of the 3D printing. Crystallinity of the PLA composites 3D printing increased with increasing bed temperature resulting in an improvement of storage modulus, tensile, and flexural properties. On the contrary, the ductility of the 3D printing was raised when printed at low bed temperature. Dynamic mechanical properties, the degree of entanglement, the adhesion factor, the effectiveness coefficient, the reinforcing efficiency factor, and the Cole-Cole analysis were used to understand the layer adhesion, and the interfacial interaction of the composites as compared to the compression molded sheets. SEM images revealed good adhesion between the additives and the PLA matrix. However, the additives induced faster solidification and showed larger voids in the 3D printing, which indicated lower layer adhesion as compared to neat PLA. It can be noted that the combination of the additives and the optimized 3D printing conditions would be obtain superior mechanical performance even layer adhesion has been restricted.

2.
Polymers (Basel) ; 13(5)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673591

ABSTRACT

Poly(lactic acid) (PLA) filaments have been the most used in fused deposition modeling (FDM) 3D printing. The filaments, based on PLA, are continuing to be developed to overcome brittleness, low heat resistance, and obtain superior mechanical performance in 3D printing. From our previous study, the binary blend composites from PLA and poly(butylene adipate-co-terephthalate) (PBAT) with nano talc (PLA/PBAT/nano talc) at 70/30/10 showed an improvement in toughness and printability in FDM 3D printing. Nevertheless, interlayer adhesion, anisotropic characteristics, and heat resistance have been promoted for further application in FDM 3D printing. In this study, binary and ternary blend composites from PLA/PBAT and poly(butylene succinate) (PBS) with nano talc were prepared at a ratio of PLA 70 wt. % and blending with PBAT or PBS at 30 wt. % and nano talc at 10 wt. %. The materials were compounded via a twin-screw extruder and applied to the filament using a capillary rheometer. PLA/PBAT/PBS/nano talc blend composites were printed using FDM 3D printing. Thermal analysis, viscosity, interlayer adhesion, mechanical properties, and dimensional accuracy of binary and ternary blend composite 3D prints were investigated. The incorporation of of PBS-enhanced crystallinity of the blend composite 3D prints resulted in an improvement to mechanical properties, heat resistance, and anisotropic characteristics. Flexibility of the blend composites was obtained by presentation of PBAT. It should be noted that the core-shell morphology of the ternary blend influenced the reduction of volume shrinkage, which obtained good surface roughness and dimensional accuracy in the ternary blend composite 3D printing.

SELECTION OF CITATIONS
SEARCH DETAIL
...