Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Dermatol ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351588

ABSTRACT

BACKGROUND: Chronic wounds have been associated with an elevated burden of cellular senescence, a state of essentially irreversible cell cycle arrest, resistance to apoptosis, and a secretory phenotype. However, whether senescent cells contribute to wound chronicity in humans remains unclear. The objective of this article is to assess the role of clinicopathological characteristics and cellular senescence in the time-to-healing of chronic wounds. METHODS: A cohort of 79 patients with chronic wounds was evaluated in a single-center academic practice from February 1, 2005, to February 28, 2015, and followed for up to 36 months. Clinical characteristics and wound biopsies were obtained at baseline, and time-to-healing was assessed. Wound biopsies were analyzed histologically for pathological characteristics and molecularly for markers of cellular senescence. In addition, biopsy slides were stained for p16INK4a expression. RESULTS: No clinical or pathological characteristics were found to have significant associations with time-to-healing. A Cox proportional hazard ratio model revealed increased CDKN1A (p21CIP1/WAF1 ) expression to predict longer time-to-healing, and a model adjusted for gender and epidermal hyperplasia revealed increased CDKN1A expression and decreased PAPPA expression to predict longer time-to-healing. Increased p16INK4a staining was observed in diabetic wounds compared to non-diabetic wounds, and the same association was observed in the context of high dermal fibrosis. CONCLUSIONS: The findings of this pilot study suggest that senescent cells contribute to wound chronicity in humans, especially in diabetic wounds.

2.
PLoS Biol ; 21(9): e3002326, 2023 09.
Article in English | MEDLINE | ID: mdl-37733806

ABSTRACT

Cellular senescence is a cell fate caused by multiple stresses. A 2008 article in PLOS Biology reported a senescence-associated secretory phenotype that can promote inflammation and cancer, eventually enabling the development of senolytic drugs.


Subject(s)
Neoplasms , Senescence-Associated Secretory Phenotype , Humans , Cellular Senescence/genetics , Neoplasms/genetics , Cell Differentiation , Inflammation , Phenotype
3.
EBioMedicine ; 77: 103912, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35292270

ABSTRACT

BACKGROUND: α-Klotho is a geroprotective protein that can attenuate or alleviate deleterious changes with ageing and disease. Declines in α-Klotho play a role in the pathophysiology of multiple diseases and age-related phenotypes. Pre-clinical evidence suggests that boosting α-Klotho holds therapeutic potential. However, readily clinically-translatable, practical strategies for increasing α-Klotho are not at hand. Here, we report that orally-active, clinically-translatable senolytics can increase α-Klotho in mice and humans. METHODS: We examined α-Klotho expression in three different human primary cell types co-cultured with conditioned medium (CM) from senescent or non-senescent cells with or without neutralizing antibodies. We assessed α-Klotho expression in aged, obese, and senescent cell-transplanted mice treated with vehicle or senolytics. We assayed urinary α-Klotho in patients with idiopathic pulmonary fibrosis (IPF) who were treated with the senolytic drug combination, Dasatinib plus Quercetin (D+Q). FINDINGS: We found exposure to the senescent cell secretome reduces α-Klotho in multiple nonsenescent human cell types. This was partially prevented by neutralizing antibodies against the senescence-associated secretory phenotype (SASP) factors, activin A and Interleukin 1α (IL-1α). Consistent with senescent cells' being a cause of decreased α-Klotho, transplanting senescent cells into younger mice reduced brain and urine α-Klotho. Selectively removing senescent cells genetically or pharmacologically increased α-Klotho in urine, kidney, and brain of mice with increased senescent cell burden, including naturally-aged, diet-induced obese (DIO), or senescent cell-transplanted mice. D+Q increased α-Klotho in urine of patients with IPF, a disease linked to cellular senescence. INTERPRETATION: Senescent cells cause reduced α-Klotho, partially due to their production of activin A and IL-1α. Targeting senescent cells boosts α-Klotho in mice and humans. Thus, clearing senescent cells restores α-Klotho, potentially opening a novel, translationally-feasible avenue for developing orally-active small molecule, α-Klotho-enhancing clinical interventions. Furthermore, urinary α-Klotho may prove to be a useful test for following treatments in senolytic clinical trials. FUNDING: This work was supported by National Institute of Health grants AG013925 (J.L.K.), AG062413 (J.L.K., S.K.), AG044271 (N.M.), AG013319 (N.M.), and the Translational Geroscience Network (AG061456: J.L.K., T.T., N.M., S.B.K., S.K.), Robert and Arlene Kogod (J.L.K.), the Connor Group (J.L.K.), Robert J. and Theresa W. Ryan (J.L.K.), and the Noaber Foundation (J.L.K.). The previous IPF clinical trial was supported by the Claude D. Pepper Older Americans Independence Centers at WFSM (AG021332: J.N.J., S.B.K.), UTHSCA (AG044271: A.M.N.), and the Translational Geroscience Network.


Subject(s)
Aging , Senotherapeutics , Aged , Animals , Brain , Cellular Senescence , Humans , Mice , Quercetin/pharmacology
5.
Cell Metab ; 34(1): 75-89.e8, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34813734

ABSTRACT

Insulin resistance is a pathological state often associated with obesity, representing a major risk factor for type 2 diabetes. Limited mechanism-based strategies exist to alleviate insulin resistance. Here, using single-cell transcriptomics, we identify a small, critically important, but previously unexamined cell population, p21Cip1 highly expressing (p21high) cells, which accumulate in adipose tissue with obesity. By leveraging a p21-Cre mouse model, we demonstrate that intermittent clearance of p21high cells can both prevent and alleviate insulin resistance in obese mice. Exclusive inactivation of the NF-κB pathway within p21high cells, without killing them, attenuates insulin resistance. Moreover, fat transplantation experiments establish that p21high cells within fat are sufficient to cause insulin resistance in vivo. Importantly, a senolytic cocktail, dasatinib plus quercetin, eliminates p21high cells in human fat ex vivo and mitigates insulin resistance following xenotransplantation into immuno-deficient mice. Our findings lay the foundation for pursuing the targeting of p21high cells as a new therapy to alleviate insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Adipose Tissue/metabolism , Animals , Cellular Senescence/physiology , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Mice , Mice, Inbred C57BL , Obesity/metabolism
6.
Aging (Albany NY) ; 13(18): 21838-21854, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531331

ABSTRACT

Senescent cells, which arise due to damage-associated signals, are apoptosis-resistant and can express a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP). We recently reported that a component of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface protein, S1, can amplify the SASP of senescent cultured human cells and that a related mouse ß-coronavirus, mouse hepatitis virus (MHV), increases SASP factors and senescent cell burden in infected mice. Here, we show that SARS-CoV-2 induces senescence in human non-senescent cells and exacerbates the SASP in human senescent cells through Toll-like receptor-3 (TLR-3). TLR-3, which senses viral RNA, was increased in human senescent compared to non-senescent cells. Notably, genetically or pharmacologically inhibiting TLR-3 prevented senescence induction and SASP amplification by SARS-CoV-2 or Spike pseudotyped virus. While an artificial TLR-3 agonist alone was not sufficient to induce senescence, it amplified the SASP in senescent human cells. Consistent with these findings, lung p16INK4a+ senescent cell burden was higher in patients who died from acute SARS-CoV-2 infection than other causes. Our results suggest that induction of cellular senescence and SASP amplification through TLR-3 contribute to SARS-CoV-2 morbidity, indicating that clinical trials of senolytics and/or SASP/TLR-3 inhibitors for alleviating acute and long-term SARS-CoV-2 sequelae are warranted.


Subject(s)
COVID-19/virology , Cellular Senescence , SARS-CoV-2/pathogenicity , Toll-Like Receptor 3/metabolism , Aging , Animals , Apoptosis , COVID-19/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Humans , Inflammation , Lung/metabolism , Mice , Phenotype , Viral Proteins , COVID-19 Drug Treatment
7.
J Am Geriatr Soc ; 69(11): 3023-3033, 2021 11.
Article in English | MEDLINE | ID: mdl-34375437

ABSTRACT

The burden of senescent cells (SnCs), which do not divide but are metabolically active and resistant to death by apoptosis, is increased in older adults and those with chronic diseases. These individuals are also at the greatest risk for morbidity and mortality from SARS-CoV-2 infection. SARS-CoV-2 complications include cytokine storm and multiorgan failure mediated by the same factors as often produced by SnCs through their senescence-associated secretory phenotype (SASP). The SASP can be amplified by infection-related pathogen-associated molecular profile factors. Senolytic agents, such as Fisetin, selectively eliminate SnCs and delay, prevent, or alleviate multiple disorders in aged experimental animals and animal models of human chronic diseases, including obesity, diabetes, and respiratory diseases. Senolytics are now in clinical trials for multiple conditions linked to SnCs, including frailty; obesity/diabetes; osteoporosis; and cardiovascular, kidney, and lung diseases, which are also risk factors for SARS-CoV-2 morbidity and mortality. A clinical trial is underway to test if senolytics decrease SARS-CoV-2 progression and morbidity in hospitalized older adults. We describe here a National Institutes of Health-funded, multicenter, placebo-controlled clinical trial of Fisetin for older adult skilled nursing facility (SNF) residents who have been, or become, SARS-CoV-2 rtPCR-positive, including the rationale for targeting fundamental aging mechanisms in such patients. We consider logistic challenges of conducting trials in long-term care settings in the SARS-CoV-2 era, including restricted access, consent procedures, methods for obtaining biospecimens and clinical data, staffing, investigational product administration issues, and potential solutions for these challenges. We propose developing a national network of SNFs engaged in interventional clinical trials.


Subject(s)
COVID-19 Drug Treatment , Cellular Senescence/drug effects , Flavonols/therapeutic use , Skilled Nursing Facilities , Aged , COVID-19/prevention & control , Clinical Trials as Topic , Drug Monitoring , Humans
8.
EBioMedicine ; 70: 103536, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34391091

ABSTRACT

BACKGROUND: Preeclampsia is a pregnancy-specific hypertensive disorder characterized by proteinuria and/or multisystem involvement. Disease-specific therapy has yet to be developed due to the lack of understanding of underlying mechanism(s). We postulate that accelerated ageing in general, and particularly cellular senescence, play a role in its pathophysiology. METHODS: We compared women with preeclampsia vs. normotensive pregnancies with respect to epigenetic markers of ageing and markers of senescence in tissues/organs affected by preeclampsia (blood, urine, adipose tissue, and kidney). FINDINGS: We demonstrate that preeclamptic compared to normotensive pregnant women: (i) undergo accelerated epigenetic ageing during pregnancy, as demonstrated by an "epigenetic clock"; (ii) exhibit higher levels/expression of senescence-associated secretory phenotype factors in blood and adipose tissue; (iii) display increased expression of p16INK4A in adipose tissue and renal sections, and (iv) demonstrate decreased levels of urinary α-Klotho (an anti-ageing protein) at the time of delivery. Finally, we provide data indicating that pre-treatment with dasatinib, a senolytic agent, rescues the angiogenic potential of mesenchymal stem cells (MSC) obtained from preeclamptic pregnancies, and promotes angiogenesis, even under pro-inflammatory conditions. INTERPRETATION: Taken together, our results identify senescence as one of the mechanisms underpinning the pathophysiology of preeclampsia. Therapeutic strategies that target senescent cells may offer novel mechanism-based treatments for preeclampsia. FUNDING: This work was supported by NIH grants, R01 HL136348, R37 AG013925, P01 AG062413, R01 DK11916, generous gifts from the Connor Fund, Robert J. and Theresa W. Ryan and from The George G. Beasley family, the Noaber Foundation, and the Henry and Emma Meyer Professorship in Molecular Genetics.


Subject(s)
Cellular Senescence , Epigenesis, Genetic , Pre-Eclampsia/genetics , Adipose Tissue/metabolism , Adult , Biomarkers/metabolism , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Dasatinib/pharmacology , Female , Humans , Kidney/metabolism , Klotho Proteins/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Protein Kinase Inhibitors/pharmacology
9.
Science ; 373(6552)2021 07 16.
Article in English | MEDLINE | ID: mdl-34103349

ABSTRACT

The COVID-19 pandemic has revealed the pronounced vulnerability of the elderly and chronically ill to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced morbidity and mortality. Cellular senescence contributes to inflammation, multiple chronic diseases, and age-related dysfunction, but effects on responses to viral infection are unclear. Here, we demonstrate that senescent cells (SnCs) become hyper-inflammatory in response to pathogen-associated molecular patterns (PAMPs), including SARS-CoV-2 spike protein-1, increasing expression of viral entry proteins and reducing antiviral gene expression in non-SnCs through a paracrine mechanism. Old mice acutely infected with pathogens that included a SARS-CoV-2-related mouse ß-coronavirus experienced increased senescence and inflammation, with nearly 100% mortality. Targeting SnCs by using senolytic drugs before or after pathogen exposure significantly reduced mortality, cellular senescence, and inflammatory markers and increased antiviral antibodies. Thus, reducing the SnC burden in diseased or aged individuals should enhance resilience and reduce mortality after viral infection, including that of SARS-CoV-2.


Subject(s)
Aging , Cellular Senescence/drug effects , Coronavirus Infections/mortality , Flavonols/therapeutic use , Pathogen-Associated Molecular Pattern Molecules/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/immunology , COVID-19/mortality , Cell Line , Coronavirus Infections/immunology , Dasatinib/pharmacology , Dasatinib/therapeutic use , Female , Flavonols/pharmacology , Gene Expression Regulation , Humans , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , Murine hepatitis virus/immunology , Quercetin/pharmacology , Quercetin/therapeutic use , Receptors, Coronavirus/genetics , Receptors, Coronavirus/metabolism , Specific Pathogen-Free Organisms , COVID-19 Drug Treatment
11.
EBioMedicine ; 47: 446-456, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31542391

ABSTRACT

BACKGROUND: Senescent cells, which can release factors that cause inflammation and dysfunction, the senescence-associated secretory phenotype (SASP), accumulate with ageing and at etiological sites in multiple chronic diseases. Senolytics, including the combination of Dasatinib and Quercetin (D + Q), selectively eliminate senescent cells by transiently disabling pro-survival networks that defend them against their own apoptotic environment. In the first clinical trial of senolytics, D + Q improved physical function in patients with idiopathic pulmonary fibrosis (IPF), a fatal senescence-associated disease, but to date, no peer-reviewed study has directly demonstrated that senolytics decrease senescent cells in humans. METHODS: In an open label Phase 1 pilot study, we administered 3 days of oral D 100 mg and Q 1000 mg to subjects with diabetic kidney disease (N = 9; 68·7 ±â€¯3·1 years old; 2 female; BMI:33·9 ±â€¯2·3 kg/m2; eGFR:27·0 ±â€¯2·1 mL/min/1·73m2). Adipose tissue, skin biopsies, and blood were collected before and 11 days after completing senolytic treatment. Senescent cell and macrophage/Langerhans cell markers and circulating SASP factors were assayed. FINDINGS: D + Q reduced adipose tissue senescent cell burden within 11 days, with decreases in p16INK4A-and p21CIP1-expressing cells, cells with senescence-associated ß-galactosidase activity, and adipocyte progenitors with limited replicative potential. Adipose tissue macrophages, which are attracted, anchored, and activated by senescent cells, and crown-like structures were decreased. Skin epidermal p16INK4A+ and p21CIP1+ cells were reduced, as were circulating SASP factors, including IL-1α, IL-6, and MMPs-9 and -12. INTERPRETATION: "Hit-and-run" treatment with senolytics, which in the case of D + Q have elimination half-lives <11 h, significantly decreases senescent cell burden in humans. FUND: NIH and Foundations. ClinicalTrials.gov Identifier: NCT02848131. Senescence, Frailty, and Mesenchymal Stem Cell Functionality in Chronic Kidney Disease: Effect of Senolytic Agents.


Subject(s)
Cellular Senescence/drug effects , Dasatinib/pharmacology , Diabetic Nephropathies/metabolism , Quercetin/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Aged , Biomarkers , Biopsy , Clinical Trials, Phase I as Topic , Dasatinib/therapeutic use , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/drug therapy , Drug Therapy, Combination , Female , Humans , Immunohistochemistry , Kidney Function Tests , Macrophages/drug effects , Macrophages/metabolism , Male , Middle Aged , Quercetin/therapeutic use
12.
Aging Cell ; 18(3): e12950, 2019 06.
Article in English | MEDLINE | ID: mdl-30907060

ABSTRACT

Adipose tissue inflammation and dysfunction are associated with obesity-related insulin resistance and diabetes, but mechanisms underlying this relationship are unclear. Although senescent cells accumulate in adipose tissue of obese humans and rodents, a direct pathogenic role for these cells in the development of diabetes remains to be demonstrated. Here, we show that reducing senescent cell burden in obese mice, either by activating drug-inducible "suicide" genes driven by the p16Ink4a promoter or by treatment with senolytic agents, alleviates metabolic and adipose tissue dysfunction. These senolytic interventions improved glucose tolerance, enhanced insulin sensitivity, lowered circulating inflammatory mediators, and promoted adipogenesis in obese mice. Elimination of senescent cells also prevented the migration of transplanted monocytes into intra-abdominal adipose tissue and reduced the number of macrophages in this tissue. In addition, microalbuminuria, renal podocyte function, and cardiac diastolic function improved with senolytic therapy. Our results implicate cellular senescence as a causal factor in obesity-related inflammation and metabolic derangements and show that emerging senolytic agents hold promise for treating obesity-related metabolic dysfunction and its complications.


Subject(s)
Adipocytes/metabolism , Adipogenesis/drug effects , Adipose Tissue/metabolism , Cellular Senescence/drug effects , Inflammation/metabolism , Insulin Resistance/physiology , Obesity/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipogenesis/physiology , Adipose Tissue/drug effects , Aging/metabolism , Aging/pathology , Animals , Cell Death/drug effects , Cell Death/genetics , Cell Death/physiology , Cell Line , Cellular Senescence/genetics , Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Dasatinib/pharmacology , Female , Ganciclovir/pharmacology , Glucose/metabolism , Humans , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Quercetin/pharmacology
13.
Semin Immunol ; 40: 101275, 2018 12.
Article in English | MEDLINE | ID: mdl-31088710

ABSTRACT

Senescent cells (SCs) arise from normal cells in multiple organs due to inflammatory, metabolic, DNA damage, or tissue damage signals. SCs are non-proliferating but metabolically active cells that can secrete a range of pro-inflammatory and proteolytic factors as part of the senescence-associated secretory phenotype (SASP). Senescent cell anti-apoptotic pathways (SCAPs) protect SCs from their own pro-apoptotic SASP. SCs can chemo-attract immune cells and are usually cleared by these immune cells. During aging and in multiple chronic diseases, SCs can accumulate in dysfunctional tissues. SCs can impede innate and adaptive immune responses. Whether immune system loss of capacity to clear SCs promotes immune system dysfunction, or conversely whether immune dysfunction permits SC accumulation, are important issues that are not yet fully resolved. SCs may be able to assume distinct states that interact differentially with immune cells, thereby promoting or inhibiting SC clearance, establishing a chronically pro-senescent and pro-inflammatory environment, leading to modulation of the SASP by the immune cells recruited and activated by the SASP. Therapies that enhance immune cell-mediated clearance of SCs could provide a lever for reducing SC burden. Such therapies could include vaccines, small molecule immunomodulators, or other approaches. Senolytics, drugs that selectively eliminate SCs by transiently disabling their SCAPs, may prove to alleviate immune dysfunction in older individuals and thereby accelerate immune-mediated clearance of SCs. The more that can be understood about the interplay between SCs and the immune system, the faster new interventions may be developed to delay, prevent, or treat age-related dysfunction and the multiple senescence-associated chronic diseases and disorders.


Subject(s)
Apoptosis , Cellular Senescence , Immune System/physiology , Aging , Chronic Disease/therapy , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...