Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5254, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644066

ABSTRACT

The diverse rumen virome can modulate the rumen microbiome, but it remains largely unexplored. Here, we mine 975 published rumen metagenomes for viral sequences, create a global rumen virome database (RVD), and analyze the rumen virome for diversity, virus-host linkages, and potential roles in affecting rumen functions. Containing 397,180 species-level viral operational taxonomic units (vOTUs), RVD substantially increases the detection rate of rumen viruses from metagenomes compared with IMG/VR V3. Most of the classified vOTUs belong to Caudovirales, differing from those found in the human gut. The rumen virome is predicted to infect the core rumen microbiome, including fiber degraders and methanogens, carries diverse auxiliary metabolic genes, and thus likely impacts the rumen ecosystem in both a top-down and a bottom-up manner. RVD and the findings provide useful resources and a baseline framework for future research to investigate how viruses may impact the rumen ecosystem and digestive physiology.


Subject(s)
Caudovirales , Microbiota , Humans , Animals , Virome , Rumen , Databases, Factual
2.
ISME Commun ; 3(1): 87, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620369

ABSTRACT

Our knowledge of viral sequence space has exploded with advancing sequencing technologies and large-scale sampling and analytical efforts. Though archaea are important and abundant prokaryotes in many systems, our knowledge of archaeal viruses outside of extreme environments is limited. This largely stems from the lack of a robust, high-throughput, and systematic way to distinguish between bacterial and archaeal viruses in datasets of curated viruses. Here we upgrade our prior text-based tool (MArVD) via training and testing a random forest machine learning algorithm against a newly curated dataset of archaeal viruses. After optimization, MArVD2 presented a significant improvement over its predecessor in terms of scalability, usability, and flexibility, and will allow user-defined custom training datasets as archaeal virus discovery progresses. Benchmarking showed that a model trained with viral sequences from the hypersaline, marine, and hot spring environments correctly classified 85% of the archaeal viruses with a false detection rate below 2% using a random forest prediction threshold of 80% in a separate benchmarking dataset from the same habitats.

3.
Science ; 376(6598): 1202-1208, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35679415

ABSTRACT

DNA viruses are increasingly recognized as influencing marine microbes and microbe-mediated biogeochemical cycling. However, little is known about global marine RNA virus diversity, ecology, and ecosystem roles. In this study, we uncover patterns and predictors of marine RNA virus community- and "species"-level diversity and contextualize their ecological impacts from pole to pole. Our analyses revealed four ecological zones, latitudinal and depth diversity patterns, and environmental correlates for RNA viruses. Our findings only partially parallel those of cosampled plankton and show unexpectedly high polar ecological interactions. The influence of RNA viruses on ecosystems appears to be large, as predicted hosts are ecologically important. Moreover, the occurrence of auxiliary metabolic genes indicates that RNA viruses cause reprogramming of diverse host metabolisms, including photosynthesis and carbon cycling, and that RNA virus abundances predict ocean carbon export.


Subject(s)
Plankton , RNA Viruses , Seawater , Virome , Carbon Cycle , Ecosystem , Oceans and Seas , Plankton/classification , Plankton/metabolism , Plankton/virology , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , Seawater/virology , Virome/genetics
4.
Science ; 376(6589): 156-162, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35389782

ABSTRACT

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.


Subject(s)
Genome, Viral , RNA Viruses , Viruses , Biological Evolution , Ecosystem , Oceans and Seas , Phylogeny , RNA , RNA Viruses/genetics , Virome/genetics , Viruses/genetics
5.
PeerJ ; 9: e11447, 2021.
Article in English | MEDLINE | ID: mdl-34178438

ABSTRACT

BACKGROUND: Viruses influence global patterns of microbial diversity and nutrient cycles. Though viral metagenomics (viromics), specifically targeting dsDNA viruses, has been critical for revealing viral roles across diverse ecosystems, its analyses differ in many ways from those used for microbes. To date, viromics benchmarking has covered read pre-processing, assembly, relative abundance, read mapping thresholds and diversity estimation, but other steps would benefit from benchmarking and standardization. Here we use in silico-generated datasets and an extensive literature survey to evaluate and highlight how dataset composition (i.e., viromes vs bulk metagenomes) and assembly fragmentation impact (i) viral contig identification tool, (ii) virus taxonomic classification, and (iii) identification and curation of auxiliary metabolic genes (AMGs). RESULTS: The in silico benchmarking of five commonly used virus identification tools show that gene-content-based tools consistently performed well for long (≥3 kbp) contigs, while k-mer- and blast-based tools were uniquely able to detect viruses from short (≤3 kbp) contigs. Notably, however, the performance increase of k-mer- and blast-based tools for short contigs was obtained at the cost of increased false positives (sometimes up to ∼5% for virome and ∼75% bulk samples), particularly when eukaryotic or mobile genetic element sequences were included in the test datasets. For viral classification, variously sized genome fragments were assessed using gene-sharing network analytics to quantify drop-offs in taxonomic assignments, which revealed correct assignations ranging from ∼95% (whole genomes) down to ∼80% (3 kbp sized genome fragments). A similar trend was also observed for other viral classification tools such as VPF-class, ViPTree and VIRIDIC, suggesting that caution is warranted when classifying short genome fragments and not full genomes. Finally, we highlight how fragmented assemblies can lead to erroneous identification of AMGs and outline a best-practices workflow to curate candidate AMGs in viral genomes assembled from metagenomes. CONCLUSION: Together, these benchmarking experiments and annotation guidelines should aid researchers seeking to best detect, classify, and characterize the myriad viruses 'hidden' in diverse sequence datasets.

6.
Microbiome ; 9(1): 37, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33522966

ABSTRACT

BACKGROUND: Viruses are a significant player in many biosphere and human ecosystems, but most signals remain "hidden" in metagenomic/metatranscriptomic sequence datasets due to the lack of universal gene markers, database representatives, and insufficiently advanced identification tools. RESULTS: Here, we introduce VirSorter2, a DNA and RNA virus identification tool that leverages genome-informed database advances across a collection of customized automatic classifiers to improve the accuracy and range of virus sequence detection. When benchmarked against genomes from both isolated and uncultivated viruses, VirSorter2 uniquely performed consistently with high accuracy (F1-score > 0.8) across viral diversity, while all other tools under-detected viruses outside of the group most represented in reference databases (i.e., those in the order Caudovirales). Among the tools evaluated, VirSorter2 was also uniquely able to minimize errors associated with atypical cellular sequences including eukaryotic genomes and plasmids. Finally, as the virosphere exploration unravels novel viral sequences, VirSorter2's modular design makes it inherently able to expand to new types of viruses via the design of new classifiers to maintain maximal sensitivity and specificity. CONCLUSION: With multi-classifier and modular design, VirSorter2 demonstrates higher overall accuracy across major viral groups and will advance our knowledge of virus evolution, diversity, and virus-microbe interaction in various ecosystems. Source code of VirSorter2 is freely available ( https://bitbucket.org/MAVERICLab/virsorter2 ), and VirSorter2 is also available both on bioconda and as an iVirus app on CyVerse ( https://de.cyverse.org/de ). Video abstract.


Subject(s)
DNA Viruses/classification , Genome, Viral/genetics , Metagenomics , RNA Viruses/classification , Software , DNA Viruses/genetics , Ecosystem , Humans , RNA Viruses/genetics
7.
Trends Microbiol ; 28(9): 709-718, 2020 09.
Article in English | MEDLINE | ID: mdl-32417229

ABSTRACT

Microbiomes and their hosts influence each other; for instance, the microbiome improves host fitness, whereas the host supports microbiome nutrition. Most studies on this topic have focused on the role of bacteria and fungi, although research on viruses that infect bacteria, known as 'bacteriophages' (phages), has gained importance due to the potential role bacteriophages play in the resilience and functionality of the gut microbiome. Like the gut microbiome, the rhizosphere harbors a complex microbiome, but little is known about the role of phages in this ecosystem. In this opinion, we extend the knowledge gained in human gut virus metagenomics (viromics) to disentangle the potential role of phages in driving the resilience and functionality of the rhizosphere microbiome. We propose that future comparative studies across environments are necessary to unravel the underlying mechanisms through which phages drive the composition and functionality of the rhizosphere microbiome and its interaction with the plant host. Importantly, such understanding might generate strategies to improve plant resistance and resilience in the context of climate change.


Subject(s)
Bacteria/virology , Bacteriophages/physiology , Plants/microbiology , Plants/virology , Rhizosphere , Virome , Biodiversity , Host Microbial Interactions , Metagenomics , Soil Microbiology
8.
Genome Biol Evol ; 12(4): 325-344, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32068849

ABSTRACT

The fungal-interactive (fungiphilic) strains BS001, BS007, BS110, and BS437 have previously been preliminarily assigned to the species Paraburkholderia terrae. However, in the (novel) genus Paraburkholderia, an as-yet unresolved subgroup exists, that clusters around Paraburkholderia hospita (containing the species P. terrae, P. hospita, and Paraburkholderia caribensis). To shed light on the precise relationships across the respective type strains and the novel fungiphiles, we here compare their genomic and ecophysiological features. To reach this goal, the genomes of the three type strains, with sizes ranging from 9.0 to 11.5 Mb, were de novo sequenced and the high-quality genomes analyzed. Using whole-genome, ribosomal RNA and marker-gene-concatenate analyses, close relationships between P. hospita DSM 17164T and P. terrae DSM 17804T, versus more remote relationships to P. caribensis DSM 13236T, were found. All four fungiphilic strains clustered closely to the two-species cluster. Analyses of average nucleotide identities (ANIm) and tetranucleotide frequencies (TETRA) confirmed the close relationships between P. hospita DSM 17164T and P. terrae DSM 17804T (ANIm = 95.42; TETRA = 0.99784), as compared with the similarities of each one of these strains to P. caribensis DSM 13236T. A species cluster was thus proposed. Furthermore, high similarities of the fungiphilic strains BS001, BS007, BS110, and BS437 with this cluster were found, indicating that these strains also make part of it, being closely linked to P. hospita DSM 17164T (ANIm = 99%; TETRA = 0.99). We propose to coin this cluster the P. hospita species cluster (containing P. hospita DSM 17164T, P. terrae DSM 17804T, and strains BS001, BS007, BS110, and BS437), being clearly divergent from the closely related species P. caribensis (type strain DSM 13236T). Moreover, given their close relatedness to P. hospita DSM 17164T within the cluster, we propose to rename the four fungiphilic strains as members of P. hospita. Analysis of migratory behavior along with fungal growth through soil revealed both P. terrae DSM 17804T and P. hospita DSM 17164T (next to the four fungiphilic strains) to be migration-proficient, whereas P. caribensis DSM 13236T was a relatively poor migrator. Examination of predicted functions across the genomes of the seven investigated strains, next to several selected additional ones, revealed the common presence of features in the P. hospita cluster strains that are potentially important in interactions with soil fungi. Thus, genes encoding specific metabolic functions, biofilm formation (pelABCDEFG, pgaABCD, alginate-related genes), motility/chemotaxis, type-4 pili, and diverse secretion systems were found.


Subject(s)
Burkholderiaceae/genetics , Fungi/genetics , Genome, Bacterial , Genome, Fungal , Genomics/methods , Burkholderiaceae/growth & development , Burkholderiaceae/metabolism , Ecology , Fungi/growth & development , Fungi/metabolism , Phylogeny , Soil Microbiology , Species Specificity
9.
FEMS Microbiol Ecol ; 95(5)2019 05 01.
Article in English | MEDLINE | ID: mdl-30980672

ABSTRACT

Microbial activity in soil, including horizontal gene transfer (HGT), occurs in soil hot spots and at "hot moments". Given their capacities to explore soil for nutrients, soil fungi (associated or not with plant roots) can act as (1) selectors of myco(rrhizo)sphere-adapted organisms and (2) accelerators of HGT processes across the cell populations that are locally present. This minireview critically examines our current understanding of the drivers of gene mobility in the myco(rrhizo)sphere. We place a special focus on the role of two major groups of gene mobility agents, i.e. plasmids and bacteriophages. With respect to plasmids, there is mounting evidence that broad-host-range (IncP-1ß and PromA group) plasmids are prominent drivers of gene mobility across mycosphere inhabitants. A role of IncP-1ß plasmids in Fe uptake processes has been revealed. Moreover, a screening of typical mycosphere-inhabiting Paraburkholderia spp. revealed carriage of integrated plasmids, next to prophages, that presumably confer fitness enhancements. In particular, functions involved in biofilm formation and nutrient uptake were thus identified. The potential of the respective gene mobility agents to promote the movement of such genes is critically examined.


Subject(s)
Bacteriophages/genetics , Burkholderiaceae/genetics , Fungi/genetics , Plasmids/genetics , Soil Microbiology , Gene Transfer, Horizontal , Microbiota , Prophages/genetics
10.
Front Microbiol ; 9: 835, 2018.
Article in English | MEDLINE | ID: mdl-29867788

ABSTRACT

The genus Paraburkholderia encompasses mostly environmental isolates with diverse predicted lifestyles. Genome analyses have shown that bacteriophages form a considerable portion of some Paraburkholderia genomes. Here, we analyzed the evolutionary history of prophages across all Paraburkholderia spp. Specifically, we investigated to what extent the presence of prophages and their distribution affect the diversity/diversification of Paraburkholderia spp., as well as to what extent phages coevolved with their respective hosts. Particular attention was given to the presence of CRISPR-Cas arrays as a reflection of past interactions with phages. We thus analyzed 36 genomes of Paraburkholderia spp., including those of 11 new strains, next to those of three Burkholderia species. Most genomes were found to contain at least one full prophage sequence. The highest number was found in Paraburkholderia sp. strain MF2-27; the nine prophages found amount to up to 4% of its genome. Among all prophages, potential moron genes (e.g., DNA adenine methylase) were found that might be advantageous for host cell fitness. Co-phylogenetic analyses indicated the existence of complex evolutionary scenarios between the different Paraburkholderia hosts and their prophages, including short-term co-speciation, duplication, host-switching and phage loss events. Analysis of the CRISPR-Cas systems showed a record of diverse, potentially recent, phage infections. We conclude that, overall, different phages have interacted in diverse ways with their Paraburkholderia hosts over evolutionary time.

11.
Trends Microbiol ; 26(8): 649-662, 2018 08.
Article in English | MEDLINE | ID: mdl-29306554

ABSTRACT

Bacteriophages are among the most abundant and diverse biological units in the biosphere. They have contributed to our understanding of the central dogma of biology and have been instrumental in the evolutionary success of bacterial pathogens. In contrast to our current understanding of marine viral communities, the soil virome and its function in terrestrial ecosystems has remained relatively understudied. Here, we examine, in a comparative fashion, the knowledge gathered from studies performed in soil versus marine settings. We address the information with respect to the abundance, diversity, ecological significance, and effects of, in particular, bacteriophages on their host's evolutionary trajectories. We also identify the main challenges that soil virology faces and the studies that are required to accompany the current developments in marine settings.


Subject(s)
Aquatic Organisms/classification , Aquatic Organisms/isolation & purification , Bacteriophages/classification , Bacteriophages/isolation & purification , Soil Microbiology , Water Microbiology , Aquatic Organisms/genetics , Bacteriophages/genetics , Ecosystem , Soil
12.
Stand Genomic Sci ; 12: 81, 2017.
Article in English | MEDLINE | ID: mdl-29270249

ABSTRACT

Here, we report the draft genome sequences of three fungal-interactive 10.1601/nm.27008 strains, denoted BS110, BS007 and BS437. Phylogenetic analyses showed that the three strains belong to clade II of the genus 10.1601/nm.1619, which was recently renamed 10.1601/nm.26956. This novel genus primarily contains environmental species, encompassing non-pathogenic plant- as well as fungal-interactive species. The genome of strain BS007 consists of 11,025,273 bp, whereas those of strains BS110 and BS437 have 11,178,081 and 11,303,071 bp, respectively. Analyses of the three annotated genomes revealed the presence of (1) a large suite of substrate capture systems, and (2) a suite of genetic systems required for adaptation to microenvironments in soil and the mycosphere. Thus, genes encoding traits that potentially  confer fungal interactivity were found, such as type 4 pili, type 1, 2, 3, 4 and 6 secretion systems, and biofilm formation (PGA, alginate and pel) and glycerol uptake systems. Furthermore, the three genomes also revealed the presence of a highly conserved five-gene cluster that had previously been shown to be upregulated upon contact with fungal hyphae. Moreover, a considerable number of prophage-like and CRISPR spacer sequences was found, next to genetic systems responsible for secondary metabolite production. Overall, the three 10.1601/nm.27008 strains possess the genetic repertoire necessary for adaptation to diverse soil niches, including those influenced by soil fungi.

13.
Sci Rep ; 7(1): 9156, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28831124

ABSTRACT

Bacteriophages constitute key gene transfer agents in many bacteria. Specifically, they may confer gene mobility to Paraburkholderia spp. that dwells in soil and the mycosphere. In this study, we first screened mycosphere and bulk soils for phages able to produce plaques, however found these to be below detection. Then, prophage identification methods were applied to the genome sequences of the mycosphere-derived Paraburkholderia terrae strains BS001, BS007, BS110 and BS437, next to P. phytofirmans strains BS455, BIFAS53, J1U5 and PsJN. These analyses revealed all bacterial genomes to contain considerable amounts [up to 13.3%] of prophage-like sequences. One sequence predicted to encode a complete phage was found in the genome of P. terrae BS437. Using the inducing agent mitomycin C, we produced high-titered phage suspensions. These indeed encompassed the progeny of the identified prophage (denoted ɸ437), as evidenced using phage major capsid gene molecular detection. We obtained the full sequence of phage ɸ437, which, remarkably, had undergone a reshuffling of two large gene blocks. One predicted moron gene was found, and it is currently analyzed to understand the extent of its ecological significance for the host.


Subject(s)
Burkholderiaceae/virology , Genome, Viral , Prophages/growth & development , Sequence Analysis, DNA/methods , Burkholderiaceae/drug effects , Burkholderiaceae/genetics , Genome, Bacterial , Mitomycin/pharmacology , Prophages/genetics , Sequence Alignment , Soil Microbiology , Virus Activation
14.
Trends Microbiol ; 24(6): 440-449, 2016 06.
Article in English | MEDLINE | ID: mdl-26826796

ABSTRACT

Bacteria and phages have traditionally been viewed as 'antagonists'. However, temperate phages can transfer genes, which can broaden their bacterial hosts' metabolic repertoire, confer or enhance virulence, or eliminate competing organisms, and so enhance bacterial fitness. Recent evidence shows that phages can also promote biofilm formation leading to population-level benefits for their bacterial hosts. Here, we provide a perspective on the ecological and evolutionary consequences for the bacteria interacting with phages, when phage and host interests are aligned. Furthermore, we examine the question whether bacterial hosts can lower immune barriers to phage infection, thereby facilitating infection by beneficial phages. Taking recent evidence together, we suggest that in many cases temperate phages are to be considered as being mutualistic as well as parasitic, at the same time.


Subject(s)
Bacteria/virology , Bacteriophages/physiology , Ecology , Evolution, Molecular , Host-Pathogen Interactions/physiology , Symbiosis , Bacteria/genetics , Bacteria/immunology , Bacteria/metabolism , Bacteriophages/genetics , Bacteriophages/pathogenicity , Biofilms/growth & development , Biological Coevolution , CRISPR-Cas Systems , Genome, Viral , Host-Pathogen Interactions/genetics , Phenotype , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...