Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 12(10)2022 09 30.
Article in English | MEDLINE | ID: mdl-35976112

ABSTRACT

The majority of sequenced genomes in the monocots are from species belonging to Poaceae, which include many commercially important crops. Here, we expand the number of sequenced genomes from the monocots to include the genomes of 4 related cyperids: Carex cristatella and Carex scoparia from Cyperaceae and Juncus effusus and Juncus inflexus from Juncaceae. The high-quality, chromosome-scale genome sequences from these 4 cyperids were assembled by combining whole-genome shotgun sequencing of Nanopore long reads, Illumina short reads, and Hi-C sequencing data. Some members of the Cyperaceae and Juncaceae are known to possess holocentric chromosomes. We examined the repeat landscapes in our sequenced genomes to search for potential repeats associated with centromeres. Several large satellite repeat families, comprising 3.2-9.5% of our sequenced genomes, showed dispersed distribution of large satellite repeat clusters across all Carex chromosomes, with few instances of these repeats clustering in the same chromosomal regions. In contrast, most large Juncus satellite repeats were clustered in a single location on each chromosome, with sporadic instances of large satellite repeats throughout the Juncus genomes. Recognizable transposable elements account for about 20% of each of the 4 genome assemblies, with the Carex genomes containing more DNA transposons than retrotransposons while the converse is true for the Juncus genomes. These genome sequences and annotations will facilitate better comparative analysis within monocots.


Subject(s)
Carex Plant , Scoparia , Carex Plant/genetics , Chromosomes, Plant/genetics , DNA Transposable Elements , Retroelements , Scoparia/genetics
2.
Am J Bot ; 103(9): 1546-58, 2016 09.
Article in English | MEDLINE | ID: mdl-27589933

ABSTRACT

PREMISE OF THE STUDY: Studies of natural populations of polyploids increasingly highlight complex patterns of variation in ploidy and geographic distribution of cytotypes. As our understanding of the complexity of polyploidy grows, our understanding of the morphological correlates of polyploidy should expand as well. Here we examine in what ways, and to what degree, polyploidy affects the overall phenotype of a species across its distribution when there are three ploidies and geographic complexity in cytotype distribution. METHODS: We measured 31 morphological traits from stems, leaves, and flowers from up to 25 individuals from 11 sites across the distribution of Phlox amabilis. Chromosome counts and flow cytometry confirmed and expanded upon earlier research documenting diploid, tetraploid, and hexaploid populations, and also identified a site with two ploidies. Univariate and multivariate statistics were used to characterize the morphological effects of polyploidy. KEY RESULTS: We detected significant associations between morphology and ploidy in 11 traits spread across vegetative and reproductive structures. Generally, diploid individuals differed from polyploid individuals to a greater extent, and in different ways, than tetraploid and hexaploid plants differed from each other. Multivariate morphometrics demonstrated that the two primary axes of overall variation are driven by morphological traits associated with polyploidy, and individuals of different ploidies can be discriminated with 95% success. CONCLUSIONS: Polyploidy plays a major role in shaping overall morphological diversity in natural populations of P. amabilis.


Subject(s)
Magnoliopsida/anatomy & histology , Magnoliopsida/genetics , Phenotype , Polyploidy , Arizona , Flowers/anatomy & histology , Flowers/genetics , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Stems/anatomy & histology , Plant Stems/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...