Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Rep ; 73(5): 1273-1286, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34181212

ABSTRACT

BACKGROUND: Dehydrozingerone (DHZ) is an active ingredient of Zingiber officinale and structural half analogue of curcumin. In the present study, DHZ was evaluated for monoamine oxidase (MAO) inhibitory activity in silico and antidepressant activity in vivo. METHOD: The binding affinity of DHZ with MAO-A (PDB ID: 2Z5Y) was assessed using Schrodinger's Maestro followed by free energy calculation, pharmacokinetic property prediction using Qikprop and Molecular dynamics simulation using Desmond. In vivo antidepressant activity of DHZ was evaluated on C57 BL/6 male mice using Escilatopram as the standard antidepressant. Open field test (OFT), forced swimming test (FST) and tail suspension test (TST) were used to evaluate the antidepressant effect of the drugs on days 1 and 7. Following the behavioural study, neurotransmitters (noradrenaline, dopamine and serotonin) were estimated using liquid chromatography-mass spectrometry. RESULTS: DHZ demonstrated a greater binding affinity for the MAO-A enzyme compared to moclobemide in silico. Immobility in TST and FST were significantly (p < 0.05) reduced in vivo with 100mg/kg DHZ as compared to respective controls. DHZ treatment was more effective 1 h post treatment compared to vehicle control. A significant increase in levels of neurotransmitters was observed in mice brain homogenate in response to DHZ treatment, reassuring its antidepressant-like potential. CONCLUSION: DHZ demonstrated MAO-A inhibition in silico, and the increased neurotransmitter levels in the brain in vivo were associated with an antidepressant-like effect.


Subject(s)
Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Styrenes/chemistry , Styrenes/pharmacology , Zingiber officinale/chemistry , Animals , Escitalopram/therapeutic use , Male , Mice , Mice, Inbred C57BL , Moclobemide , Molecular Docking Simulation , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...