Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(1): 933-946, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35036757

ABSTRACT

It is always highly desired to have a well-defined relationship between the chemistry in semiconductor processing and the device characteristics. With the shrinkage of technology nodes in the semiconductors roadmap, it becomes more complicated to understand the relation between the device electrical characteristics and the process parameters such as oxidation and wafer cleaning procedures. In this work, we use a novel machine learning approach, i.e., physics-assisted multitask and transfer learning, to construct a relationship between the process conditions and the device capacitance voltage curves. While conventional semiconductor processes and device modeling are based on a physical model, recently, the machine learning-based approach or hybrid approaches have drawn significant attention. In general, a huge amount of data is required to train a machine learning model. Since producing data in the semiconductor industry is not an easy task, physics-assisted artificial intelligence has become an obvious choice to resolve these issues. The predicted C-V uses the hybridization of physics, and machine learning provides improvement while the coefficient of determination (R 2) is 0.9442 for semisupervised multitask learning (SS-MTL) and 0.9253 for transfer learning (TL), referenced to 0.6108 in the pure machine learning model using multilayer perceptrons. The machine learning architecture used in this work is capable of handling data sparsity and promotes the usage of advanced algorithms to model the relationship between complex chemical reactions in semiconductor manufacturing and actual device characteristics. The code is available at https://github.com/albertlin11/moscapssmtl.

2.
PLoS One ; 14(8): e0220607, 2019.
Article in English | MEDLINE | ID: mdl-31408473

ABSTRACT

While there have been many studies using machine learning (ML) algorithms to predict process outcomes and device performance in semiconductor manufacturing, the extensively developed technology computer-aided design (TCAD) physical models should play a more significant role in conjunction with ML. While TCAD models have been effective in predicting the trends of experiments, a machine learning statistical model is more capable of predicting the anomalous effects that can be dependent on the chambers, machines, fabrication environment, and specific layouts. In this paper, we use an analytics-statistics mixed training (ASMT) approach using TCAD. Under this method, the TCAD models are incorporated into the machine learning training procedure. The mixed dataset with the experimental and TCAD results improved the prediction in terms of accuracy. With the application of ASMT to the BOSCH process, we show that the mean square error (MSE) can be effectively decreased when the analytics-statistics mixed training (ASMT) scheme is used instead of the classic neural network (NN) used in the baseline study. In this method, statistical induction and analytical deduction can be combined to increase the prediction accuracy of future intelligent semiconductor manufacturing.

SELECTION OF CITATIONS
SEARCH DETAIL
...