Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Res ; 130(4): 647-658, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28332056

ABSTRACT

Alfalfa (Medicago sativa L.) genotypes at varying densities were investigated for allelopathic impact using annual ryegrass (Lolium rigidum) as the target species in a laboratory bioassay. Three densities (15, 30, and 50 seedlings/beaker) and 40 alfalfa genotypes were evaluated by the equal compartment agar method (ECAM). Alfalfa genotypes displayed a range of allelopathic interference in ryegrass seedlings, reducing root length from 5 to 65%. The growth of ryegrass decreased in response to increasing density of alfalfa seedlings. At the lowest density, Q75 and Titan9 were the least allelopathic genotypes. An overall inhibition index was calculated to rank each alfalfa genotype. Reduction in seed germination of annual ryegrass occurred in the presence of several alfalfa genotypes including Force 10, Haymaster7 and SARDI Five. A comprehensive metabolomic analysis using Quadruple Time of Flight (Q-TOF), was conducted to compare six alfalfa genotypes. Variation in chemical compounds was found between alfalfa root extracts and exudates and also between genotypes. Further individual compound assessments and quantitative study at greater chemical concentrations are needed to clarify the allelopathic activity. Considerable genetic variation exists among alfalfa genotypes for allelopathic activity creating the opportunity for its use in weed suppression through selection.


Subject(s)
Allelopathy , Lolium/physiology , Medicago sativa/physiology , Genotype , Lolium/genetics , Lolium/growth & development , Medicago sativa/chemistry , Medicago sativa/genetics , Medicago sativa/growth & development , Plant Exudates/chemistry , Plant Exudates/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/physiology , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology
2.
J Agric Food Chem ; 63(48): 10355-65, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26550846

ABSTRACT

Widespread infection of Epichloë occultans in annual ryegrass in Australia suggests that infection provides its weedy host, Lolium rigidum, some ecological advantage. Initial studies determined the distribution and profiles of known Epichloë alkaloids (epoxy-janthitrems, ergovaline, lolines, lolitrem B, and peramine) in plant extracts using a combination of GC-FID and HPLC techniques utilizing a single accession of Australian L. rigidum. However, the lolines N-acetylnorloline (NANL) and N-formylloline (NFL) were the only alkaloids detected and were highly concentrated in the immature inflorescences of mature plants. Additional glasshouse studies subjected a wide range of Australian L. rigidum haplotypes and international annual Lolium accessions to a suite of analyses to determine alkaloid levels and profiles. Again, NFL and NANL were the key lolines produced, with NFL consistently predominating. Considerable variation in alkaloid production was found both within and between biotypes and accessions evaluated under identical conditions, at the same maturation stage and on the same tissue type. The pyrrolopyrazine alkaloid peramine was also present in 8 out of 17 Australian biotypes of L. rigidum and 7 out of 33 international accessions infected with Epichloë spp.; the highest peramine concentrations were observed in seed extracts from L. rigidum collected from Australia. This study represents the first report of alkaloids from a geographically diverse collection of annual ryegrass germplasm infected with Epichloë spp. when grown under identical controlled conditions.


Subject(s)
Alkaloids/analysis , Epichloe/physiology , Lolium/chemistry , Lolium/microbiology , Plant Diseases/microbiology , Alkaloids/metabolism , Australia , Lolium/genetics , Lolium/metabolism , Plant Diseases/genetics
3.
Front Plant Sci ; 5: 765, 2014.
Article in English | MEDLINE | ID: mdl-25620971

ABSTRACT

Allelopathy is one crop attribute that could be incorporated in an integrated weed management system as a supplement to synthetic herbicides. However, the underlying principles of crop allelopathy and secondary metabolite production are still poorly understood including in canola. In this study, an allelopathic bioassay and a metabolomic analysis were conducted to compare three non-allelopathic and three allelopathic canola genotypes. Results from the laboratory bioassay showed that there were significant differences among canola genotypes in their ability to inhibit root and shoot growth of the receiver annual ryegrass; impacts ranged from 14% (cv. Atr-409) to 76% (cv. Pak85388-502) and 0% (cv. Atr-409) to 45% (cv. Pak85388-502) inhibition respectively. The root length of canola also differed significantly between genotypes, there being a non-significant negative interaction (r = -0.71; y = 0.303x + 21.33) between the root length of donor canola and of receiver annual ryegrass. Variation in chemical composition was detected between organs (root extracts, shoot extracts) and root exudates and also between canola genotypes. Root extracts contained more secondary metabolites than shoot extracts while fewer compounds were recorded in the root exudates. Individual compound assessments identified a total of 14 secondary metabolites which were identified from the six tested genotypes. However, only Pak85388-502 and Av-opal exuded sinapyl alcohol, p-hydroxybenzoic acid and 3,5,6,7,8-pentahydroxy flavones in agar growth medium, suggesting that the synergistic effect of these compounds playing a role for canola allelopathy against annual ryegrass in vitro.

4.
J Chem Ecol ; 35(9): 1129-36, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19787403

ABSTRACT

In a previous study, lavender (Lavandula spp.) was found to be highly phytotoxic towards annual ryegrass (Lolium rigidum, ARG), a major weed of winter wheat crops in Australia. This research aimed to further explore this relationship and determine the chemical(s) responsible for the observed effect. In bioassay, it was determined that the stem and leaf extract of L. x intermedia cv. Grosso ranked highest and had the potential to reduce significantly the root growth of several plant species. An extract concentration of 10% almost completely inhibited ARG root growth. When the extract was tested for stability, there was no loss in phytotoxicity after the 256 day trial. Via bioassay-guided fractionation and chromatographic techniques, it was determined that the sub-fraction consisting of coumarin and 7-methoxycoumarin was most phytotoxic towards ARG. Chemoassays of 18 structural analogues of coumarin showed that coumarin itself was the most phytotoxic and largely responsible for the observed phytotoxicity of the extract. Soil trials were conducted using pure coumarin and the lavender extract, and in both instances, shoot length and weight were significantly reduced by post-emergence application at all concentrations evaluated.


Subject(s)
Herbicides/chemistry , Lavandula/chemistry , Coumarins/chemistry , Coumarins/isolation & purification , Coumarins/toxicity , Herbicides/isolation & purification , Herbicides/toxicity , Lolium/drug effects , Lolium/growth & development , Plant Extracts/chemistry , Plant Extracts/toxicity , Plant Leaves/chemistry , Plant Roots/drug effects , Plant Roots/growth & development , Plant Stems/chemistry
5.
Pest Manag Sci ; 64(4): 402-8, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18078302

ABSTRACT

BACKGROUND: Glyphosate resistance has been confirmed in 58 populations of Lolium rigidum (Gaud.), a major weed of crops in southern Australia. Extensive use of glyphosate in conjunction with minimal soil disturbance has been identified as high risk for resistance to that herbicide. Land managers need a simple method for rapid assessment of the risk of resistance occurring as a result of past and proposed future management practices. Modelled on risk assessment nomographs, a simple calculator for indicating the risk of evolved glyphosate resistance in L. rigidum is described. RESULTS: The calculator uses the generations since first use and the frequency of use of glyphosate in combination with historical cultivation levels as critical factors for determining the risk of glyphosate resistance evolution. Based on the management history of a field, a land manager can graphically determine a glyphosate resistance risk for that field. CONCLUSION: The calculator enables the farmer or the advisor to assess the risk of a weed's population becoming resistant and modify practices accordingly to manage for sustainable glyphosate use. The risk calculator could be modified for other herbicides and different weed species.


Subject(s)
Glycine/analogs & derivatives , Herbicides , Lolium/genetics , Nomograms , Herbicide Resistance/genetics , Risk Assessment/methods , Glyphosate
6.
J Chem Ecol ; 30(8): 1647-62, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15537165

ABSTRACT

An investigation of the chemical basis for rice allelopathy to the rice weed arrowhead (Sagittaria montevidensis) was undertaken using GC/MS and GC/MS/MS techniques. Twenty-five compounds were isolated and identified from the root exudates of both allelopathic and non-allelopathic rice varieties. Phenolics, phenylalkanoic acids, and indoles were among the chemical classes identified. Two indoles previously unreported in rice were detected in the exudates, 5-hydroxy-2-indolecarboxylic acid and 5-hydroxyindole-3-acetic acid. Several other compounds identified in this study have not previously been reported in rice root exudates, namely mercaptoacetic acid, 4-hydroxyphenylacetic acid, and 4-vinylphenol. The levels of 15 compounds present in the exudates were quantified using GC/MS/MS. Six of the seven most abundant compounds were phenolic acids. Significant differences exist between the allelopathic and non-allelopathic cultivars in their production of three of these six compounds. Greater amounts of trans-ferulic acid, p-hydroxybenzoic acid, and caffeic acid were detected in the exudates of allelopathic cultivars. The seventh compound, abietic acid, was significantly higher in the non-allelopathic cultivars.


Subject(s)
Oryza/chemistry , Pheromones/analysis , Plant Roots/chemistry , Abietanes/analysis , Caffeic Acids/analysis , Coumaric Acids/analysis , Gas Chromatography-Mass Spectrometry , Hydroxybenzoates/analysis , Indoles/analysis , Phenanthrenes/analysis , Phenols/analysis , Phenylacetates/analysis , Pheromones/chemistry , Thioglycolates/analysis
7.
J Chem Ecol ; 30(8): 1663-78, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15537166

ABSTRACT

In previous studies, 15 putative allelopathic compounds detected in rice root exudates were quantified by GC/MS/MS. In this study, multiple regression analysis on these compounds determined that five selected phenolics, namely caffeic, p-hydroxybenzoic, vanillic, syringic, and p-coumaric acids, from rice exudates were best correlated with the observed allelopathic effect on arrowhead (Sagittaria montevidensis) root growth. Despite this positive association, determination of the phenolic acid dose-response curve established that the amount quantified in the exudates was much lower than the required threshold concentration for arrowhead inhibition. A similar dose-response curve resulted from a combination of all 15 quantified compounds. Significant differences between the amounts of trans-ferulic acid, abietic acid, and an indole also existed between allelopathic and non-allelopathic rice cultivars. The potential roles of these three compounds in rice allelopathy were examined by chemoassay. Overall, neither the addition of trans-ferulic acid nor 5-hydroxyindole-3-acetic acid to the phenolic mix significantly contributed to phytotoxicity, although at higher concentrations, trans-ferulic acid appeared to act antagonistically to the phytotoxic effects of the phenolic mix. The addition of abietic acid also decreased the inhibitory effect of the phenolic mix. These studies indicate that the compounds quantified are not directly responsible for the observed allelopathic response. It is possible that the amount of phenolic acids may be indirectly related to the chemicals finally responsible for the observed allelopathic effect.


Subject(s)
Oryza/chemistry , Pheromones/pharmacology , Plant Roots/drug effects , Abietanes/analysis , Coumaric Acids/analysis , Dose-Response Relationship, Drug , Evaluation Studies as Topic , Gas Chromatography-Mass Spectrometry , Hydroxybenzoates/analysis , Indoles/analysis , Phenanthrenes/analysis , Phenols/analysis , Pheromones/chemistry , Plant Roots/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...