Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(27): E2518-27, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23776240

ABSTRACT

Synaptic loss is the cardinal feature linking neuropathology to cognitive decline in Alzheimer's disease (AD). However, the mechanism of synaptic damage remains incompletely understood. Here, using FRET-based glutamate sensor imaging, we show that amyloid-ß peptide (Aß) engages α7 nicotinic acetylcholine receptors to induce release of astrocytic glutamate, which in turn activates extrasynaptic NMDA receptors (eNMDARs) on neurons. In hippocampal autapses, this eNMDAR activity is followed by reduction in evoked and miniature excitatory postsynaptic currents (mEPSCs). Decreased mEPSC frequency may reflect early synaptic injury because of concurrent eNMDAR-mediated NO production, tau phosphorylation, and caspase-3 activation, each of which is implicated in spine loss. In hippocampal slices, oligomeric Aß induces eNMDAR-mediated synaptic depression. In AD-transgenic mice compared with wild type, whole-cell recordings revealed excessive tonic eNMDAR activity accompanied by eNMDAR-sensitive loss of mEPSCs. Importantly, the improved NMDAR antagonist NitroMemantine, which selectively inhibits extrasynaptic over physiological synaptic NMDAR activity, protects synapses from Aß-induced damage both in vitro and in vivo.


Subject(s)
Amyloid beta-Peptides/toxicity , Astrocytes/metabolism , Glutamic Acid/metabolism , Neural Inhibition/physiology , Peptide Fragments/toxicity , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Astrocytes/pathology , Coculture Techniques , Female , Fluorescence Resonance Energy Transfer , HEK293 Cells , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Mice , Mice, Transgenic , Rats , Receptors, Nicotinic/metabolism , Synapses/metabolism , alpha7 Nicotinic Acetylcholine Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...