Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Syst Neurosci ; 17: 1162664, 2023.
Article in English | MEDLINE | ID: mdl-37350800

ABSTRACT

The neocortex encodes complex and simple motor outputs in all mammalian species that have been tested. Given that changes in neocortical reorganization (and corresponding corticospinal output) have been implicated in long term motor recovery after stroke injury, there remains a need to understand this biology in order to expedite and optimize clinical care. Here, changes in the neocortical topography of complex and simple movement outputs were evaluated in mice following experimental middle cerebral artery occlusion (MCAo). Neocortical motor output was defined using long-duration parameters of intracortical microstimulation (LD-ICMS) based on area and spatial coordinates of separate motor output types to build upon our recent report in uninjured mice. LD-ICMS test sites that elicited complex (multi-joint) movement, simple (single skeletal joint) movement, as well as co-elicited FORELIMB + HINDLIMB responses were detected and recorded. Forelimb reaching behavior was assessed using the single pellet reaching (SPR) task. At 6 weeks post-surgery, behavioral deficits persisted and neocortical territories for separate movements exhibited differences in neocortical area, and spatial location, and differed between MCAo-Injured animals (i.e., the MCAo group) and Sham-Injured animals (i.e., the Control group). MCAo-Injury reduced neocortical area of complex movements while increasing area of simple movements. Limited effects of injury were detected for spatial coordinates of neocortical movements. Significant positive correlations were detected between final SPR performance and either area of complex retract or area of co-occurring FORELIMB + HINDLIMB sites.

2.
J Surg Res ; 232: 146-153, 2018 12.
Article in English | MEDLINE | ID: mdl-30463710

ABSTRACT

BACKGROUND: In combat-related trauma, resuscitation goals are to attenuate tissue hypoxia and maintain circulation. During hemorrhagic shock, compensatory and autoregulatory mechanisms are activated to preserve cerebral blood flow. Transcranial Doppler (TCD) ultrasonography may be an ideal noninvasive modality to monitor cerebral hemodynamics. Using a nonhuman primate (NHP) model, we attempted to characterize cerebral hemodynamics during polytraumatic hemorrhagic shock using TCD ultrasonography. MATERIALS AND METHODS: The ophthalmic artery was insonated at multiple time points during varying stages of shock. Hemorrhage was controlled and pressure targeted to 20 mmHg to initiate and maintain the shock period. Mean flow velocity (MFV), peak systolic velocity (PSV), end diastolic velocity (EDV), pulsatility index (PI), and resistance index (RI) were recorded. Results represent mean ± standard deviation; statistical significance is P < 0.05; n = 12. RESULTS: Compared to baseline, MFV, PSV, EDV, and RI show significant changes after 60 min of hemorrhagic shock, (9.81 ± 3.60 cm/s; P < 0.01), (21.15 ± 8.59 cm/s; P < 0.01), (5.15 ± 0.21 cm/s; P < 0.01), (0.70 ± 0.11; P < 0.05), respectively. PI did not change during hemorrhagic shock. At end of prehospital care (T30), cerebral flow recovers for MFV, PSV, and RI while EDV remained decreased at T30 (6.15 ± 1.13 cm/s; P < 0.01) and 1 h of simulated transport (T90) (5.87 ± 0.62 cm/s; P < 0.01). Changes in PI at T30 and T90 were not significant. MFV diminished (16.45 ± 3.85 cm/s; P < 0.05) at T90. CONCLUSIONS: This study establishes baseline and hemorrhagic shock values for NHP cerebral blood flow velocities and cerebrovascular indices. TCD ultrasonography may represent an important area of research for targeted resuscitation investigations using a hemorrhagic shock model in NHPs.


Subject(s)
Cerebrovascular Circulation/physiology , Multiple Trauma/physiopathology , Shock, Hemorrhagic/physiopathology , Ultrasonography, Doppler, Transcranial/methods , Animals , Blood Flow Velocity , Disease Models, Animal , Hemodynamics , Macaca mulatta , Male , Multiple Trauma/diagnostic imaging , Shock, Hemorrhagic/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...