Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
BMC Evol Biol ; 19(1): 81, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894117

ABSTRACT

BACKGROUND: Congruent patterns in the distribution of biodiversity between regions or habitats suggest that key factors such as climatic and topographic variation may predictably shape evolutionary processes. In a number of tropical and arid biomes, genetic analyses are revealing deeper and more localised lineage diversity in rocky ranges than surrounding habitats. Two potential drivers of localised endemism in rocky areas are refugial persistence through climatic change, or ecological diversification and specialisation. Here we examine how patterns of lineage and phenotypic diversity differ across two broad habitat types (rocky ranges and open woodlands) in a small radiation of gecko lizards in the genus Gehyra (the australis group) from the Australian Monsoonal Tropics biome. RESULTS: Using a suite of approaches for delineating evolutionarily independent lineages, we find between 26 and 41 putative evolutionary units in the australis group (versus eight species currently recognised). Rocky ranges are home to a greater number of lineages that are also relatively more restricted in distribution, while lineages in open woodland habitats are fewer, more widely distributed, and, in one case, show evidence of range expansion. We infer at least two shifts out of rocky ranges and into surrounding woodlands. Phenotypic divergence between rocky ranges specialist and more generalist taxa is detected, but no convergent evolutionary regimes linked to ecology are inferred. CONCLUSIONS: In climatically unstable biomes such as savannahs, rocky ranges have functioned as zones of persistence, generators of diversity and a source of colonists for surrounding areas. Phenotypic divergence can also be linked to the use of differing habitat types, however, the extent to which ecological specialisation is a primary driver or secondary outcome of localised diversification remains uncertain.


Subject(s)
Biodiversity , Geologic Sediments , Lizards/physiology , Phylogeny , Animals , Australia , Climate Change , DNA, Mitochondrial/genetics , Exons/genetics , Lizards/genetics
2.
Zootaxa ; 4403(2): 201-244, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29690231

ABSTRACT

Recent advances in molecular genetic techniques and increased fine scale sampling in the Australian Monsoonal Tropics (AMT) have provided new impetus to reassess species boundaries in the Gehyra nana species complex, a clade of small-bodied, saxicolous geckos which are widely distributed across northern Australia. A recent phylogenomic analysis revealed eight deeply divergent lineages that occur as a series of overlapping distributions across the AMT and which, as a whole, are paraphyletic with four previously described species. Several of these lineages currently included in G. nana are phenotypically distinct, while others are highly conservative morphologically. Here we use an integrated approach to explore species delimitation in this complex. We redefine G. nana as a widespread taxon with complex genetic structure across the Kimberley of Western Australia and Top End of the Northern Territory, including a lineage with mtDNA introgressed from the larger-bodied G. multiporosa. We describe four new species with more restricted distributions within the G. nana complex. The new species are phylogenetically divergent and morphologically diagnosable, and include the relatively cryptic G. paranana sp. nov. from the western Northern Territory, the large-bodied G. pseudopunctata sp. nov. from the southern Kimberley ranges, G. granulum sp. nov., a small-bodied form with granules on the proximal lamellae from the north-west and southern Kimberley ranges and the small-bodied G. pluraporosa sp. nov. restricted to the northern Kimberley. Our revision largely stabilises the taxonomy of the G. nana complex, although further analyses of species limits among the remaining mostly parapatric lineages of G. nana sensu stricto are warranted.


Subject(s)
Lizards , Animals , Body Size , DNA, Mitochondrial , Northern Territory , Phylogeny , Western Australia
3.
Evolution ; 72(1): 54-66, 2018 01.
Article in English | MEDLINE | ID: mdl-29067680

ABSTRACT

Understanding the joint evolutionary and ecological underpinnings of sympatry among close relatives remains a key challenge in biology. This problem can be addressed through joint phylogenomic and phenotypic analysis of complexes of closely related lineages within, and across, species and hence representing the speciation continuum. For a complex of tropical geckos from northern Australia-Gehyra nana and close relatives-we combine mtDNA phylogeography, exon-capture sequencing, and morphological data to resolve independently evolving lineages and infer their divergence history and patterns of morphological evolution. Gehyra nana is found to include nine divergent lineages and is paraphyletic with four other species from the Kimberley region of north-west Australia. Across these 13 taxa, 12 of which are restricted to rocky habitats, several lineages overlap geographically, including on the diverse Kimberley islands. Morphological evolution is dominated by body size shifts, and both body size and shape have evolved gradually across the group. However, larger body size shifts are observed among overlapping taxa than among closely related parapatric lineages of G. nana, and sympatric lineages are more divergent than expected at random. Whether elevated body size differences among sympatric lineages are due to ecological sorting or character displacement remains to be determined.


Subject(s)
Lizards/classification , Lizards/genetics , Animals , Biological Evolution , Lizards/growth & development , Lizards/physiology , Phylogeny
4.
Zootaxa ; 4231(1): zootaxa.4231.1.5, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28187551

ABSTRACT

The tropical savannah landscapes of Australia's north, though previously overshadowed by the biodiverse rainforests of the Wet Tropics, are themselves now attracting interest for their biological significance and uniqueness. The Einasleigh Uplands region of north-east Queensland is home to a diverse group of mammals and reptiles and was previously recognised for its importance in shaping speciation in birds. Here we add a small saxicoline gecko to a growing list of recently described reptiles that are endemic to this region. Phylogenetic analyses including Gehyra species from the arid zone and the monsoonal tropics reveal that small Gehyra geckos in this area, while closely resembling Gehyra nana from the Top End and Kimberley, form a clade that is geographically isolated and phylogenetically distant from the G. nana complex. Instead, the Einasleigh Uplands taxon is sister to a large, arboreal species within the arid zone clade. It is readily distinguished from all lineages within the G. nana complex, its closest relative G. purpurascens, and all other rock-dwelling species from the arid zone by a combination of its very small body size, few subdigital lamellae, and mid tan to golden dorsal coloration with a pattern of scattered pale ocelli and irregular dark-brown blotches on a stippled background. We therefore describe this taxon as a new Australian species of Gehyra, Gehyra einasleighensis sp. nov., based on a combination of phylogenetic separation, morphological characters and discrete geographic distribution.


Subject(s)
Lizards , Animals , Australia , Body Size , Female , Phylogeny , Queensland
5.
Zootaxa ; 4107(1): 49-64, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-27394804

ABSTRACT

Ongoing fieldwork and molecular research continues to reveal that the monsoonal tropics of northern Australia contain more vertebrate species than currently recognised. Here we focus on two morphologically distinctive, yet unrecognised forms in the genus Gehyra from the southern Kimberley region and surrounding deserts. We base our descriptions on a combination of unpublished genetic data and a morphological examination of voucher specimens. We recognise and redescribe G. kimberleyi, a species with a broad distribution extending over most of the south-west Kimberley, across the Great Sandy Desert and into the far northern Pilbara. This species has been previously assigned to G. pilbara owing to its frequent occurrence on termite mounds and short snout, but can be distinguished from G. pilbara and other regionally sympatric Gehyra by its moderate body size, moderate number of pre-cloacal pores in males (12-17) and aspects of dorsal colouration. We also describe G. girloorloo sp. nov., a small rock-dwelling species with a short snout, low number of pre-cloacal pores in males (8-11) and pinkish-grey dorsal colouration with alternating series of indistinct pale spots and irregular transversely-aligned dark blotches. The new species appears to be restricted to a relatively small region of exposed limestone karst in the south-west Kimberley and is entirely circumscribed by morphologically similar congeners.


Subject(s)
Lizards/anatomy & histology , Lizards/classification , Muscidae/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Ecosystem , Female , Lizards/growth & development , Male , Muscidae/anatomy & histology , Muscidae/growth & development , Organ Size , Western Australia
6.
Mol Biol Evol ; 31(9): 2322-30, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24881050

ABSTRACT

Marsupials exhibit great diversity in ecology and morphology. However, compared with their sister group, the placental mammals, our understanding of many aspects of marsupial evolution remains limited. We use 101 mitochondrial genomes and data from 26 nuclear loci to reconstruct a dated phylogeny including 97% of extant genera and 58% of modern marsupial species. This tree allows us to analyze the evolution of habitat preference and geographic distributions of marsupial species through time. We found a pattern of mesic-adapted lineages evolving to use more arid and open habitats, which is broadly consistent with regional climate and environmental change. However, contrary to the general trend, several lineages subsequently appear to have reverted from drier to more mesic habitats. Biogeographic reconstructions suggest that current views on the connectivity between Australia and New Guinea/Wallacea during the Miocene and Pliocene need to be revised. The antiquity of several endemic New Guinean clades strongly suggests a substantially older period of connection stretching back to the Middle Miocene and implies that New Guinea was colonized by multiple clades almost immediately after its principal formation.


Subject(s)
Biological Evolution , Computational Biology/methods , Ecosystem , Marsupialia/genetics , Adaptation, Biological , Animals , DNA, Mitochondrial/analysis , Evolution, Molecular , Marsupialia/classification , Phylogeny , Phylogeography , Sequence Analysis, DNA
7.
PLoS One ; 8(2): e57745, 2013.
Article in English | MEDLINE | ID: mdl-23451266

ABSTRACT

The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus) and M. (Osphranter), as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus). A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby) into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby) within M. (Osphranter) rather than as expected, with M. (Notamacropus). Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression.


Subject(s)
DNA, Mitochondrial/genetics , Genes, Mitochondrial , Macropodidae/genetics , Animals , Cell Nucleus/genetics , Phylogeny , Sequence Analysis, DNA/methods
8.
Mol Biol Evol ; 26(2): 313-26, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18981298

ABSTRACT

We report three developments toward resolving the challenge of the apparent basal polytomy of neoavian birds. First, we describe improved conditional down-weighting techniques to reduce noise relative to signal for deeper divergences and find increased agreement between data sets. Second, we present formulae for calculating the probabilities of finding predefined groupings in the optimal tree. Finally, we report a significant increase in data: nine new mitochondrial (mt) genomes (the dollarbird, New Zealand kingfisher, great potoo, Australian owlet-nightjar, white-tailed trogon, barn owl, a roadrunner [a ground cuckoo], New Zealand long-tailed cuckoo, and the peach-faced lovebird) and together they provide data for each of the six main groups of Neoaves proposed by Cracraft J (2001). We use his six main groups of modern birds as priors for evaluation of results. These include passerines, cuckoos, parrots, and three other groups termed "WoodKing" (woodpeckers/rollers/kingfishers), "SCA" (owls/potoos/owlet-nightjars/hummingbirds/swifts), and "Conglomerati." In general, the support is highly significant with just two exceptions, the owls move from the "SCA" group to the raptors, particularly accipitrids (buzzards/eagles) and the osprey, and the shorebirds may be an independent group from the rest of the "Conglomerati". Molecular dating mt genomes support a major diversification of at least 12 neoavian lineages in the Late Cretaceous. Our results form a basis for further testing with both nuclear-coding sequences and rare genomic changes.


Subject(s)
Birds/classification , Animals , Birds/genetics , DNA, Mitochondrial/genetics , Phylogeny , Sequence Analysis, DNA
9.
Philos Trans R Soc Lond B Biol Sci ; 363(1508): 3427-37, 2008 Oct 27.
Article in English | MEDLINE | ID: mdl-18782727

ABSTRACT

New Zealand taxa from the Orthopteran family Anostostomatidae have been shown to consist of three broad groups, Hemiandrus (ground weta), Anisoura/Motuweta (tusked weta) and Hemideina-Deinacrida (tree-giant weta). The family is also present in Australia and New Caledonia, the nearest large land masses to New Zealand. All genera are endemic to their respective countries except Hemiandrus that occurs in New Zealand and Australia. We used nuclear and mitochondrial DNA sequence data to study within genera and among species-level genetic diversity within New Zealand and to examine phylogenetic relationships of taxa in Australasia. We found the Anostostomatidae to be monophyletic within Ensifera, and justifiably distinguished from the Stenopelmatidae among which they were formerly placed. However, the New Zealand Anostostomatidae are not monophyletic with respect to Australian and New Caledonian species in our analyses. Two of the New Zealand groups have closer allies in Australia and one in New Caledonia. We carried out maximum-likelihood and Bayesian analyses to reveal several well supported subgroupings. Our analysis included the most extensive sampling to date of Hemiandrus species and indicate that Australian and New Zealand Hemiandrus are not monophyletic. We used molecular dating approaches to test the plausibility of alternative biogeographic hypotheses for the origin of the New Zealand anostostomatid fauna and found support for divergence of the main clades at, or shortly after, Gondwanan break-up, and dispersal across the Tasman much more recently.


Subject(s)
Demography , Genetic Variation , Orthoptera/genetics , Phylogeny , Animals , Australasia , Base Sequence , Bayes Theorem , DNA, Mitochondrial/genetics , Geography , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Orthoptera/classification , Sequence Analysis, DNA , Species Specificity
10.
Mol Phylogenet Evol ; 46(2): 594-605, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17959392

ABSTRACT

The marsupial order Diprotodontia includes 10 extant families, which occupy all terrestrial habitats across Australia and New Guinea and have evolved remarkable dietary and locomotory diversity. Despite considerable attention, the interrelations of these families have for the most part remained elusive. In this study, we separately model mitochondrial RNA and protein-coding sequences in addition to nuclear protein-coding sequences to provide near-complete resolution of diprotodontian family-level phylogeny. We show that alternative topologies inferred in some previous studies are likely to be artifactual, resulting from branch-length and compositional biases. Subordinal groupings resolved herein include Vombatiformes (wombats and koala) and Phalangerida, which in turn comprises Petauroidea (petaurid gliders and striped, feathertail, ringtail and honey possums) and a clade whose plesiomorphic members possess blade-like premolars (phalangerid possums, kangaroos and their allies and most likely, pygmy possums). The topology resolved reveals ecological niche structuring among diprotodontians that has likely been maintained for more than 40 million years.


Subject(s)
Macropodidae/classification , Marsupialia/classification , Phascolarctidae/classification , Phylogeny , Animals , Australasia , Bayes Theorem , Macropodidae/genetics , Marsupialia/genetics , Phalangeridae/classification , Phalangeridae/genetics , Phascolarctidae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...