Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 9(35): 19895-19904, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-35514740

ABSTRACT

Using the Combinatorial Substrate Epitaxy (CSE) approach, we report the stabilization of Dy2Ti2O7 epitaxial monoclinic, layered-perovskite phase Dy2Ti2O7 thin films. To achieve this, the films are deposited on high density, polished La2Ti2O7 polycrystalline ceramic substrates, which are stable as monoclinic layered-perovskites, and were prepared by conventional sintering. Microstructural analysis using electron backscatter diffraction (EBSD), electron diffraction (ED), and high-resolution transmission electron microscopy (HRTEM) support this observation. Further, they reveal that the cubic pyrochlore phase is observed far from the interface as films are grown thicker (100 nm), confirming the importance of substrate-induced phase and space group selection. This works reinforces the vast potential of CSE to promote the stabilization of metastable phases, thus giving access to new functional oxide materials, across a range of novel material systems including ferroelectrics.

2.
J Nanosci Nanotechnol ; 12(2): 928-36, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22629874

ABSTRACT

We report photocatalytic degradation studies on Navy Blue HE2R (NB) dye on significant details as a representative from the class of azo dyes using functional nanosystems specifically designed to allow a strong photocatalytic activity. A modified sol-gel route was employed to synthesize Au and gamma-Fe2O3 modified TiO2 nanoparticles (NPs) at low temperature. The attachment strategy is better because it allows clear surface of TiO2 to remain open for photo-catalysis. X-ray diffraction, Raman and UV-VIS spectroscopy studies showed the presence of gold and iron oxide phases along-with the anatase TiO2 phase. TEM studies showed TiO2 nanocomposite particles of size approximately 10-12 nm. A detailed investigation on heterogeneous photocatalytic performance for Navy Blue HE2R dye was done using the as-synthesized catalysts Au:TiO2 and gamma-Fe2O3:TiO2 in aqueous suspension under 8 W low-pressure mercury vapour lamp irradiation. Also, the photocatalytic degradation of Amranth and Orange G azo dyes were studied. The surface modified TiO2 NPs showed significantly improved photocatalytic activity as compared to pure TiO2. Exposure of the dye to the UV light in the presence of pure and gold NPs attached TiO2 catalysts caused dye degradation of about approximately 20% and approximately 80%, respectively, in the first couple of hours. In the presence of gamma-Fe2O3 NPs attached TiO2, a remarkable approximately 95% degradation of the azo dye was observed only in the first 15 min of UV exposure. The process parameters for the optimum catalytic activity are established which lead to a complete decoloration and substantial dye degradation, supported by the values of the Chemical Oxygen Demand (COD) approximately 93% and Total Organic Carbon (TOC) approximately 65% of the treated dye solution after 5 hours on the employment of the UV/Au:TiO2/H2O2 photocatalytic process.

3.
Langmuir ; 27(21): 13189-97, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21894994

ABSTRACT

In the present study, a facile one-pot synthetic route, utilizing a strong polar organic solvent, N-methyl 2-pyrrolidone (NMP), is demonstrated to obtain highly monodispersed ferrite nanocrystals. The equimolar mixture of oleic acid, C(17)H(33)COOH (R-COOH), and oleylamine, C(18)H(35)NH(2) (R'-NH(2)), was used to coat the magnetic nanocrystals. Structural and magnetic properties of the ferrite nanocrystals were studied by a multitechnique approach including X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM), and Mössbauer spectroscopy. FTIR spectral analysis indicates oleylamine helps in deprotonation of oleic acid, resulting in the formation of an acid-base complex, R-COO¯:NH(3)(+)-R', which acts as binary capping agent. Structural and coordination differences of iron were studied by XPS and Mössbauer spectral analysis. XPS analysis was carried out to examine the oxidation state of iron ions in iron oxide nanocrystals. The presence of a magnetically dead layer (∼0.38 and ∼0.67 nm) and a nonmagnetic organic coating (∼2.3 and ∼1.7 nm) may substantially reduce the saturation magnetization values for CoFe(2)O(4) and Fe(3)O(4) nanocrystals, respectively. The energy barrier distribution function of magnetic anisotropy was derived from the temperature dependent decay of magnetization. A very narrow energy barrier distribution elucidates that the ferrite nanocrystals obtained in this study are highly monodispersed.

SELECTION OF CITATIONS
SEARCH DETAIL
...