Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Environ Sci Pollut Res Int ; 31(16): 23802-23821, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430436

ABSTRACT

Biodiesel production through the synthesis of Datura stramonium L. oil is studied to explore the most efficient approaches to suggest an alternate feedstock for biodiesel production. The main objective of this work is to optimize the process variables of biodiesel synthesis by using some statistical approach (Taguchi method, grey relational analysis (GRA), and response surface methodology (RSM) analyzing three parameters, i.e., alcohol-to-oil molar ratio, catalyst (NaOH) concentration, and process temperature for achieving maximum biodiesel derived from Datura stramonium L. oil. The transesterification process is applied by using an ultrasonic-assisted technique. Grey relational analysis (GRA) was successfully applied with the Taguchi method resulting in the optimum combination of A2B1C1. Based on the findings, the best operating conditions for transesterifying are attained with the RSM approach consisting of a 5.697:1 molar ratio (level 2), 0.3 (wt.%) NaOH concentration (level 1), and 70 °C process temperature (level 1). With a value of 87.02%, these ideal operating conditions produce the maximum yield as compared to grey relational analysis (GRA) yields 83.99%. The obtained results have been verified through the characterization of oil and biodiesel as well. Also, the fuel qualities of DSL biodiesel were identified and assessed. DSL oil was found 137.6 degrees of unsaturation during fatty acid profile analysis. DSL biodiesel was found the best kinematic viscosity (4.2 mm2/s) and acid value (0.49) when compared to Karanja and palm biodiesel. D. stramonium L. was recognized as a suitable species for biodiesel feedstock according to the findings.


Subject(s)
Datura stramonium , Biofuels , Sodium Hydroxide , Esterification , Fatty Acids , Catalysis
2.
Chem Sci ; 15(11): 4095-4105, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38487234

ABSTRACT

In this study, we prepared non-heme FeIII complexes (1, 2, and 3) of an N4 donor set of ligands (H2L, Me2L, and BPh2L). 1 is supported by a monoanionic bispyridine-dioxime ligand (HL). In 2 and 3, the primary coordination sphere of Fe remained similar to that in 1, except that the oxime protons of the ligand were replaced with two methyl groups and a bridging -BPh2 moiety, respectively. X-ray structures of the FeII complexes (1a and 3a) revealed similar Fe-N distances; however, they were slightly elongated in 2a. The FeIII/FeII potential of 1, 2, and 3 appeared at -0.31 V, -0.25 V, and 0.07 V vs. Fc+/Fc, respectively, implying that HL and Me2L have comparable donor properties. However, BPh2L is more electron deficient than HL or Me2L. 1 showed electrocatalytic oxygen reduction reaction (ORR) activity in acetonitrile in the presence of trifluoroacetic acid (TFAH) as the proton source at Ecat/2 = -0.45 V and revealed selective 4e-/4H+ reduction of O2 to H2O. 1 showed an effective overpotential (ηeff) of 0.98 V and turnover frequency (TOFmax) of 1.02 × 103 s-1. Kinetic studies revealed a kcat of 2.7 × 107 M-2 s-1. Strikingly, 2 and 3 remained inactive for electrocatalytic ORR, which established the essential role of the oxime scaffolds in the electrocatalytic ORR of 1. Furthermore, a chemical ORR of 1 has been investigated using decamethylferrocene as the electron source. For 1, a similar rate equation was noted to that of the electrocatalytic pathway. A kcat of 6.07 × 104 M-2 s-1 was found chemically. Complex 2, however, underwent a very slow chemical ORR. Complex 3 chemically enhances the 4e-/4H+ reduction of O2 and exhibits a TOF of 0.24 s-1 and a kcat value of 2.47 × 102 M-1 s-1. Based on the experimental observations, we demonstrate that the oxime backbone of the ligand in 1 works as a proton exchanging site in the 4e-/4H+ reduction of O2. The study describes how the ORR is affected by the tuning of the ligand scaffold in a family of non-heme Fe complexes.

3.
Sci Rep ; 14(1): 4074, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374327

ABSTRACT

Nanotechnology appears to be a promising tool to redefine crop nutrition in the coming decades. However, the crucial interactions of nanomaterials with abiotic components of the environment like soil organic matter (SOM) and carbon‒sequestration may hold the key to sustainable crop nutrition, fortification, and climate change. Here, we investigated the use of sugar press mud (PM) mediated ZnO nanosynthesis for soil amendment and nutrient mobilisation under moderately alkaline conditions. The positively charged (+ 7.61 mv) ZnO sheet-like nanoparticles (~ 17 nm) from zinc sulphate at the optimum dose of (75 mg/kg blended with PM (1.4% w/w) were used in reinforcing the soil matrix for wheat growth. The results demonstrated improved agronomic parameters with (~ 24%) and (~ 19%) relative increases in yield and plant Zn content. Also, the soil solution phase interactions of the ZnO nanoparticles with the PM-induced soil colloidal carbon (- 27.9 mv and diameter 0.4864 µm) along with its other components have influenced the soil nutrient dynamics and mineral ecology at large. Interestingly, one such interaction seems to have reversed the known Zn-P interaction from negative to positive. Thus, the study offers a fresh insight into the possible correlations between nutrient interactions and soil carbon sequestration for climate-resilient crop productivity.


Subject(s)
Nanoparticles , Zinc Oxide , Zinc Oxide/chemistry , Triticum , Sugars , Soil/chemistry , Nanoparticles/chemistry , Minerals , Carbon/chemistry
4.
Phys Chem Chem Phys ; 26(3): 1777-1791, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38168681

ABSTRACT

Developing an efficient, selective, and stable electrocatalysis system for the electrocatalytic N2 reduction reaction (ENRR) is a promising strategy for the green and sustainable production of ammonia. The activity, selectivity, and stability of various electrocatalysts in different electrolyte solvents, mainly acidic and alkaline electrolytes, are commonly compared in the literature. However, a mechanistic insight into the effect of these electrolytes on ENRR activity is lacking. Herein we demonstrate that the acidity or alkalinity of the electrolyte is a key factor in determining the rate-limiting step and, by extension, the ENRR performance of an electrochemical setup for the electroproduction of ammonia. Our results from ex situ X-ray photoelectron, Raman, and FTIR spectroscopy analysis of the fresh and spent Cu-hexacyanoferrate Prussian blue analogue-decorated functionalized carbon nanotube (CuFe PBA/f-CNT) catalyst reveal that NH4+-species are more strongly adsorbed on the catalyst surface during the ENRR in acidic than in alkaline electrolytes. The results of our detailed rotating ring-disc electrode voltammetry studies suggest that the ENRR over CuFe PBA/f-CNT is mostly controlled by surface adsorption in an acidic electrolyte and by mass transport in an alkaline electrolyte. In situ Raman spectroscopy confirms this finding and shows that the leaching of Fe(CN)6 species from the CuFe PBA/f-CNT composite in an alkaline electrolyte greatly affects the ENRR performance. We believe that the work presented herein offers a new insight into the mechanistic aspects of the ENRR in different electrolyte systems and hence can prove very valuable for the development of effective ENRR electrode/electrolyte systems for practical applications.

5.
ChemSusChem ; 17(3): e202301315, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37932870

ABSTRACT

The successful synthesis of finely tuned Ni1.5 Sn nanoalloy phases containing ZnO catalyst with a small particle size (6.7 nm) from a mixed-metal zeolitic imidazolate framework (MM-ZIF) is investigated. The catalyst was evaluated for the efficient production of 1,2-propanediol (1,2-PDO) from crude glycerol and comprehensively characterized using several analytical techniques. Among the catalysts, 3Ni1Sn/ZnO (Ni/Sn=3/1) showed the best catalytic performance and produced the highest yield (94.2 %) of 1,2-PDO at ~100 % conversion of glycerol; it also showed low apparent activation energy (15.4 kJ/mol) and excellent stability. The results demonstrated that the synergy between Ni-Sn alloy, finely dispersed Ni metallic sites, and the Lewis acidity of SnOx species-loaded ZnO played a pivotal role in the high activity and selectivity of the catalyst. The confirmation of acetol intermediate and theoretical calculations verify the Ni1.5 Sn phases provide the least energetic pathway for the formation of 1,2-PDO selectively. The reusability of solvent for successive ZIF synthesis, along with the excellent recyclability of the ZIF-derived catalyst, enables an overall sustainable process. We believe that the present synthetic protocol that uses MM-ZIF for the conversion of various biomass-derived platform chemicals into valuable products can be applied to various nanoalloy preparations.

6.
Nanoscale ; 16(1): 411-426, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38073595

ABSTRACT

Designing molecular cages for atomic/molecular scale guests is a special art used by material chemists to harvest the virtues of the otherwise vile idea known as "the cage". In recent years, there has been a notable surge in research investigations focused on the exploration and utilization of the distinct advantages offered by this art in the advancement of efficient and stable bio-electrocatalysts. This usually is achieved through encapsulation of biologically accessible redox proteins within specifically designed molecular cages and matrices. Herein, we present the first successful method for encaging cytochrome c (Cyt-c), a clinically significant enzyme system, inside coordination-driven self-assembled Cu6Pd12Fe12 heterometallic hexagonal molecular boxes (Cu-HMHMB), in order to create a Cyt-c@Cu-HMHMB composite. 1H NMR, FTIR, and UV-Vis spectroscopy, ICP-MS, TGA and voltammetric investigations carried out on the so-crafted Cyt-c@Cu-HMHMB bio-inorganic composite imply that the presented strategy ensures encaging of Cyt-c in a catalytically active, electrochemically stable and redox-accessible state inside the Cu-HMHMB. Cyt-c@Cu-HMHMB is demonstrated to exhibit excellent stability and electrocatalytic activity toward very selective, sensitive electrochemical sensing of nitrite exhibiting a limit of detection as low as 32 nanomolar and a sensitivity of 7.28 µA µM-1 cm-2. Importantly, Cyt-c@Cu-HMHMB is demonstrated to exhibit an excellent electrocatalytic performance toward the 4e pathway oxygen reduction reaction (ORR) with an onset potential of 0.322 V (vs. RHE) and a Tafel slope of 266 mV dec-1. Our findings demonstrate that Cu-HMHMB is an excellent matrix for Cyt-c encapsulation. We anticipate that the entrapment-based technique described here will be applicable to other enzyme systems and Cyt-c for various electrochemical and other applications.


Subject(s)
Cytochromes c , Nitrites , Cytochromes c/metabolism , Oxidation-Reduction , Spectrum Analysis
7.
Nanoscale Adv ; 6(1): 155-169, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38125588

ABSTRACT

Green approaches for nanosynthesis often lack the precise control of synthetic outcomes, which is primarily due to the poorly defined reaction protocols. Herein, we investigated the use of lignocellulosic agro-waste, sugarcane press mud (PM), for the synthesis of ZnO nanoparticles using three different precursor salts and their further application in the photocatalytic degradation of rhodamine dyes. This approach resulted in the formation of ZnO nanoparticles with two different morphologies, i.e., sheet-like structure from the zinc sulphate and nitrate precursors, whereas sphere-like structures from zinc acetate. In all three cases, the wurtzite phase (P63mc) of ZnO nanoparticles remained consistent. Also, the ZnO nanoparticles were found to be positively charged ("ζ" = +8.81 to +9.22 mv) and nearly monodispersed, with a size and band gap in the range of ∼14-20 nm and 3.78-4.1 eV, respectively. Further, the potential photocatalytic activity of these nanoparticles was investigated under direct sunlight. At the same photocatalyst dose of 0.1 g L-1, the three ZnO nanoparticles showed varying efficiencies due to their shape anisotropy. The ZnO NPs from acetate salt (∼20 nm, sheet like) showed the highest dye degradation efficiency (90.03%) in 4.0 hours, indicating the role of the catalyst-dye interface in designing efficient photocatalysts.

8.
Article in English | MEDLINE | ID: mdl-37670711

ABSTRACT

The most prevalent cause of dementia is Alzheimer's disease (AD). Although the global AD rate is on a constant rise, medical research is yet to find a cure for this neurological condition. Current available therapeutic drugs for AD treatment only provide symptomatic alleviation. Therefore, it is essential to establish effective AD treatment strategies in addressing clinical needs. The development of disease-modifying treatments for use in the disease's early stages and the advancement of symptomatic drugs principally used in the disease's later stages are priorities in AD research. Given that the etiology of AD is difficult to comprehend, using a multimodal therapy intervention that targets molecular targets of AD-related degenerative processes is a practical strategy to change the course of AD progression. The current review article discussed PPAR-α (Peroxisome proliferator-activated receptor-α) and PDE5 (Phosphodiesterase type 5) targets with evidence for their preclinical and clinical importance. Furthermore, we support the targets with AD-related processes, functions, and remedial measures. A unique synergistic method for treating AD may involve the beneficial combinatorial targeting of these two receptors. Furthermore, we reviewed different PDE chemical families in this research and identified PDE5 inhibitors as one of the promising AD-related experimental and clinical disease-modifying medications. Lastly, we suggest jointly targeting these two pathways would be more beneficial than monotherapy in AD treatments.

9.
RSC Adv ; 13(35): 24450-24459, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37588977

ABSTRACT

Developing cost-effective electrocatalysts using earth-abundant metal as an alternative to expensive precious metal catalyst remains a key challenge for researchers. Several strategies are being researched/tested for making low-cost transition metal complexes with controlled electron-density and coordination flexibility around the metal center to enhance their catalytic activity. Herein, we report a novel lutidine coordinated cobalt(ii) acetate complex [(3,5-lutidine)2Co(OAc)2(H2O)2] (1) as a promising electrocatalyst for oxygen evolution reaction (OER). Complex 1 was characterized by FT-IR, elemental analysis, and single crystal X-ray diffraction data. The structure optimization of complex 1 was also done using DFT calculation and the obtained geometrical parameters were found to be in good agreement with the parameters obtained from the solid state structure obtained through single crystal X-ray diffraction data. Further, the molecular electrostatic potential (MEP) maps analysis of complex 1 observed electron rich centers that were found to be in agreement with the solid-state structure. It was understood that the coordination of lutidine as a Lewis base and acetate moiety as a flexible ligand will provide more coordination flexibility around the metal center to facilitate the catalytic reaction. Further, the electron rich centers around metal center will also support the enhancement of their catalytic activity. Complex 1 shows impressive OER activity, even better than the state-of-the-art IrO2 catalyst, in terms of turnover frequency (TOF: 0.05) and onset potential (1.50 V vs. RHE). The TOF for complex 1 is two and half times higher, while the onset potential is ca. 20 mV lower, than the benchmark IrO2 catalyst studied under identical conditions.

10.
ACS Appl Mater Interfaces ; 15(25): 30187-30198, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37314759

ABSTRACT

The electrochemical CO2 reduction reaction (ECO2RR) into value-added products is crucial to address the herculean task of CO2 mitigation. Several efforts are being made to develop active ECO2RR catalysts, targeting enhanced CO2 adsorption and activation. A rational design of ECO2RR catalysts with a facile product desorption step is seldom reported. Herein, ensuing the Sabatier principle, we report a strategy for an enhanced ECO2RR with a faradaic efficiency of 85% for CO production by targeting the product desorption step. The energy barrier for product desorption was lowered via a tailored electronic environment of oxygen vacancies (Ovac) in Cr-doped SrTiO3. The substitutional doping of Cr3+ for Ti4+ into the SrTiO3 lattice favors the generation of more Ovac and modifies the local electronic environment. Density functional theory analysis evinces the spontaneous dissociation of COOH# intermediates over Ovac and lower CO intermediate binding on Ovac reducing the energy demand for CO release due to Cr doping.

11.
Bioinorg Chem Appl ; 2023: 1731931, 2023.
Article in English | MEDLINE | ID: mdl-37125143

ABSTRACT

One of the more enticing, ecologically responsible, as well as safe and sustainable methodologies is eco-friendly nanomaterial synthesis. Vegetation materials will be used as reductants instead of toxic substances for synthesising nanoparticles. The current study used Ruellia tuberosa (RT) leaf extract digest to synthesise FeO nanomaterials, which were then characterised using XRD. Following that, microbially produced FeO molecules were mixed with a Kevlar-based polymeric matrix to study the blended consequences. To examine the interbreeding, the current experimental analyses were performed, including both static and dynamic mechanical characteristics. The addition of FeO nanofillers improved the elastic modulus, tensile strength, and storage modulus of the nanocomposite. Impact force uptake has been raised to a certain extent by the addition of nanoparticles. The findings of this research show that incorporating FeO nanofillers into Kevlar fabrics is a promising technique for increasing the mechanical characteristics of hybrid laminated composites. As per DMA evaluation, the sample without nanomaterials had a more volcanic lava response, which is a useful thing for body systems for missile use. Another critical aspect of a nanoparticles-filled nanocomposite that must be addressed is the relatively uniform scattering of padding as well as the development of interfacial adhesion in such a combination. The presence of FeO fillers in polymeric composites is confirmed by XRD analysis.

12.
Bioinorg Chem Appl ; 2023: 9299658, 2023.
Article in English | MEDLINE | ID: mdl-37125144

ABSTRACT

Metallic nanoparticles (NPs) manufactured by ecofriendly strategies have also received much interest because of their elastic scattering properties and performance in nanomaterials. Aluminium oxide nanomaterials stand out among nanomaterials due to their tremendous uses in ceramic products, fabrics, therapeutic agents, catalyst supports, sewage sludge, and biosensors. The current paper investigates the effect of the nanoparticle composition and layer sequential on the mechanical characteristics of jute (J)-hemp (H) incorporated with an aluminium oxide polymer composite. NaOH is used to change the physical aspects of both plant fibres. A total of 20 specimens were tested with varying stacking sequences and padding weight ratios. Mechanical properties like a nanocomposite's tension, bending, and ILSS was measured. Stacked series and flowability substantially impact the nanocomposite. The Group 3 nanocomposite with 2% Al2O3 has the highest tensile strength, 54.28% of the Group 1 and 2 combinations. The stack series significantly influences the material properties of nanomaterials. Because of the alternating layers of natural fabrics, Group 4 specimens have the maximum flexural strength. Group 3 composite materials have the highest ILSS because they have hemp on the outermost surface. It has been discovered that Group 4 material with a 2% Al2O3 concentration is possibly the most substantial material. The existence of Al2O3 nanoparticles in the green synthesis was confirmed by XRD analysis.

13.
J Phys Chem Lett ; 14(15): 3627-3635, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37026698

ABSTRACT

Proteins are dynamic molecules, relying on conformational changes to carry out function. Measurement of these conformational changes can provide insight into how function is achieved. For proteins in the solid state, this can be done by measuring the decrease in the strength of anisotropic interactions due to motion-induced fluctuations. The measurement of one-bond heteronuclear dipole-dipole coupling at magic-angle-spinning (MAS) frequencies >60 kHz is ideal for this purpose. However, rotational-echo double resonance (REDOR), an otherwise gold-standard technique for the quantitative measurement of these couplings, is difficult to implement under these conditions, especially in nondeuterated samples. We present here a combination of strategies based on REDOR variants ϵ-REDOR and DEDOR (deferred REDOR) and simultaneously measure residue-specific 15N-1H and 13Cα-1Hα dipole-dipole couplings in nondeuterated systems at the MAS frequency of 100 kHz. These strategies open up avenues to access dipolar order parameters in a variety of systems at the increasingly fast MAS frequencies that are now available.


Subject(s)
Magnetic Resonance Imaging , Proteins , Proteins/chemistry , Magnetic Resonance Spectroscopy/methods , Motion , Anisotropy
14.
J Struct Biol X ; 7: 100082, 2023.
Article in English | MEDLINE | ID: mdl-36618437

ABSTRACT

The assignment of aromatic side-chain spins has always been more challenging than assigning backbone and aliphatic spins. Selective labeling combined with mutagenesis has been the approach for assigning aromatic spins. This manuscript reports a method for assigning aromatic spins in a fully protonated protein by connecting them to the backbone atoms using a low-power TOBSY sequence. The pulse sequence employs residual polarization and sequential acquisitions techniques to record HN- and HC-detected spectra in a single experiment. The unambiguous assignment of aromatic spins also enables the characterization of 1H-1H distance restraints involving aromatic spins. Broadband (RFDR) and selective (BASS-SD) recoupling sequences were used to generate HN-ΗC, HC-HN and HC-HC restraints involving the side-chain proton spins of aromatic residues. This approach has been demonstrated on a fully protonated U-[13C,15N] labeled GB1 sample at 95-100 kHz MAS.

15.
Environ Sci Pollut Res Int ; 30(16): 45977-45985, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36715808

ABSTRACT

Effective building energy management systems need a reliable approach to estimating future energy needs using renewable energy sources. However, nonlinear and nonstationary trends in building energy use data make prediction more challenging for integrating the photovoltaic system. To estimate future energy forecast, this work presents a hybrid approach based on random forest (RF) and long short-term memory (LSTM) using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Initial steps in our suggested procedure include utilizing CEEMDAN to translate the raw energy usage data into multiple components. Then, the component with the most significant frequency is predicted using RF, and the other components are forecasted using hybrid LSTM. Finally, all of the individual parts' predictions are combined to form a whole. Real-world output energy usage data has been predicted to test the suggested strategy. Results from the experiments show that the suggested strategy outperforms the reference methods.


Subject(s)
Random Forest , Forecasting
16.
Bioinorg Chem Appl ; 2022: 1659855, 2022.
Article in English | MEDLINE | ID: mdl-36193249

ABSTRACT

The current work focuses on peanut shells and agricultural wastes richly in many nations subjected to pyrolysis treatment at various temperatures in the range of 500-800°C to determine the feasible physiochemical characteristics of the biochar. The biochars with the high surface area were employed to adsorb Pb2+ (lead) ions, the heaviest pollutants in the water bodies. The raw material, biochar, and pyrolyzed biochar were characterized by SEM, FTIR, partial and elemental analysis, and BET tests. The adsorption characteristics of the biochar, pre- and postpyrolysis treatment, were studied with the assistance of batch adsorption tests under varying test conditions. Adsorbing conditions were determined by evaluating the effects of adsorbing parameters like initial concentration of the lead in water, pH of the adsorbent, contact time, and mixing speed on the effective adsorption of Pb2+ ions from water. Langmuir, Freundlich, and Themkin isotherm expressions were employed to study the experimental results. The adsorption kinetics study showed that the synthesized biochars were chemically stable enough to adsorb the Pb ions onto the surface.

17.
Bioinorg Chem Appl ; 2022: 3127135, 2022.
Article in English | MEDLINE | ID: mdl-35910304

ABSTRACT

The main focus of this research is to enhance the use of eco-friendly materials these days. The current materials used in building construction are chemical-based and are harmful to humans and the environment. This research work has developed a new type of hybrid brick by using natural fibres and waste materials. This research focuses on fabricating novel bricks reinforced with different percentages of coconut waste fibre, wheat straw fibre, waste wood animal dung ash, gypsum, sand, and cement. The fabricated novel brick's physical, mechanical, chemical, acoustic, and heat-absorbing properties were evaluated.

18.
Bioinorg Chem Appl ; 2022: 7470263, 2022.
Article in English | MEDLINE | ID: mdl-35959227

ABSTRACT

Industrial wastes contain more toxins that get dissolved in the rivers and lakes, which are means of freshwater reservoirs. The contamination of freshwater leads to various issues for microorganisms and humans. This paper proposes a novel method to remove excess copper from the water. The nanotubes are used as a powder in membrane form to remove the copper from the water. The multiwalled carbon nanotube is widely used as a membrane for filtration. It contains many graphene layers of nm size that easily adsorbs the copper when the water permeates through it. Activated carbon is the earliest and most economical method that also adsorbs copper to a certain extent. This paper proposes the methods of involving the activated carbon in the multiwalled carbon nanotube to improve the adsorption capability of the copper. Here, activated carbon is impregnated on the multiwalled carbon nanotube's defect and imperfect surface areas. It makes more adsorption sites on the surface, increasing the adsorption amount. The same method is applied to Hydroxyl functionalized multiwalled carbon nanotubes. Both the methods showed better results and increased the copper removal. The functionalized method removed 93.82% copper, whereas the nonfunctionalized method removed 80.62% copper from the water.

19.
Bioinorg Chem Appl ; 2022: 6426763, 2022.
Article in English | MEDLINE | ID: mdl-35859704

ABSTRACT

Natural fibre reinforcement is used in important sectors such as medical, aerospace, automobile, and many other fields. Many articles have reported that natural fibre has the potential to replace synthetic fibres. Natural fibre reinforcement has given good results as a brake friction material. It has already been proven that asbestos causes lung cancer and mesothelioma in brakes. Many people died from the effects of asbestos. According to the World Health Organization's trending brake report, this material leads to serious health issues. This work is going on for the replacement of these materials. Mulberry fibre is a unique material, and PAN fibre is combined with mulberry fibre and used as a brake reinforcement material to replace Kevlar fibre. The brake pads were fabricated with the various wt% of mulberry fibres and PAN fibre [3-12%] with an equal ratio and aramid fibre [3-6%] in the hydraulic hind brake moulding machine. The mechanical, chemical, physical, tribological, and thermal properties were evaluated. MF-2 [6 wt%] mulberry-PAN-fibre-based brake pad composites have shown better results for ultimate shear strength and proof stress, tensile strength, compressive strength, and impact energy.

20.
J Diabetes Metab Disord ; 21(1): 493-510, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35673482

ABSTRACT

Purpose: This study aims to evaluate the effects of Manilkara zapota (L) P. Royen fruit peel extract (EMZFP) and its fractions in ameliorating diabetes and its complications in alloxan and STZ-NA induced diabetes in Wistar rats. Methods: Antidiabetic effects of EMZFP were assessed in alloxan (150 mg kg-1) induced diabetes in differently grouped rats (n=6). Diabetic rats were treated with EMZFP 150, 300, and 600 mg kg-1 while, glimepiride (0.09 mg kg-1) was used as a reference standard. Treated animals were assessed for various biological parameters i.e. blood glucose, serum lipids, nephroprotective markers, cardiovascular risk indices, liver glycogen, neuropathy, body weight, and histopathology of kidneys. However, for evaluating antidiabetic effects of fractions (chloroform, acetone, ethyl acetate, and remaining ethanol fraction) of EMZFP, diabetes was induced by streptozotocin (60 mg kg-1)-nicotinamide (120 mg kg-1/ml) in differently grouped male rats (n=6). Diabetic rats were treated with EMZFP fractions 200 mg kg-1 however; glibenclamide (10 mg kg-1) was a reference standard and evaluated for blood glucose, serum lipids, cardiovascular risk indices, and diabetic neuropathy. Results: EMZFP 300 and 600 mg kg-1/day demonstrated significant antihyperglycemic effects with augmentation in glycogen content, perfection in serum lipid profile, cardiovascular risk indices, body weight enhancement, nephroprotective effects, beneficial in peripheral neuropathy, and histopathological evidence of reversal of glomerulosclerosis. EMZFP-Et and EMZFP-EA fractions depicted a significant improvement in blood glucose, serum lipid profile, cardiovascular risk indices, and peripheral neuropathy. Conclusion: EMZFP and its Et and EA fractions ameliorated diabetes and its complications by improving glycemic control and associated biochemical alteration. Highlights: • Manilkara Zapota (L.) P. Royen fruit peel 70% ethanolic extract exert antidiabetic effects• EMZFP significantly ameliorated diabetic biochemical parameters and its complications.• EMZFP-Et and EMZFP-EA fractions exert potential antihyperglycemic, hypolipidemic effects and significantly improved cardiovascular risk indices, and peripheral neuropathy.• Studied MZFP can be used as promising natural herbal source of antidiabetic principles.

SELECTION OF CITATIONS
SEARCH DETAIL
...