Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Deliv Transl Res ; 14(2): 542-554, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37648938

ABSTRACT

The goal of the present work consisted of the formulation development and evaluation of quinapyramine sulphate (QS)-loaded long-acting oil-based nanosuspension for improved antitrypanosomal effect. QS was transformed into a hydrophobic ionic complex using anionic sodium cholate (Na.C). The complex was characterized by FTIR, DSC, and XRD. Oil-based nanosuspension was prepared by dispersing the QS-Na.C complex in thixotropically thickened olive oil. The nanoformulation was found to be cytocompatible (82.5 ± 5.87% cell viability at the minimum effective concentration [MEC]) in THP-1 cell lines and selectively trypanotoxic (p < 0.0001). The pharmacokinetic studies of QS-Na.C complex-loaded oily nanosuspension showed 13.54-fold, 7.09-fold, 1.78-fold, and 17.35-fold increases in t1/2, AUC0-∞, Vz/F, and MRT0-ꝏ, respectively, as compared to free QS. Moreover, a 7.08-fold reduction in plasma clearance was observed after the treatment with the optimized formulation in Wistar rats. Furthermore, treatment with QS-Na.C complex-loaded oily nanosuspension (7.5 mg/kg) in T. evansi-infected mice model showed the absence of parasitaemia for more than 75 days after the treatment during in vivo efficacy studies. The efficacy of the treatment was assessed by observation of blood smear and PCR assay for DNA amplification. To conclude, our findings suggest that the efficient delivery of QS from the developed QS-Na.C complex-loaded oily nanosuspension could be a promising treatment option for veterinary infections against trypanosomiasis.


Subject(s)
Nanoparticles , Trypanosomiasis , Animals , Rats , Mice , Sulfates , Rats, Wistar , Quinolinium Compounds/chemistry , Disease Models, Animal , Nanoparticles/chemistry , Suspensions
2.
J Pharm Sci ; 110(5): 2241-2249, 2021 05.
Article in English | MEDLINE | ID: mdl-33549701

ABSTRACT

The objective of the present work is to prepare and evaluate ionically complexed Quinapyramine sulphate (QS) loaded lipid nanoparticles and its scale up using geometric similarity principle. Docusate sodium (DS), at a molar ratio of 1:2 of QS to DS, was used to prepare hydrophobic Quinapyramine sulphate-Docusate sodium (QS-DS) ionic complex. Based on the difference in total solubility parameter and polarity of QS-DS complex and different lipids, precirol was selected as a lipid for the preparation of lipidic nanoparticles. The particle size, zeta potential, and % entrapment efficiency (%EE) of QS-DS ionic complex loaded solid lipid nanoparticles (QS-DS-SLN) was found to be 250.10 ± 26.04 nm, -27.41 ± 4.18 mV and 81.26 ± 4.67% respectively. FTIR studies confirmed the formation of QS-DS ionic complex. DSC and XRD studies revealed the amorphous nature of QS in QS-DS-SLN. The spherical shape of nanoparticles was confirmed by scanning electron microscopy. QS-DS-SLN showed sustained release of QS for up to 60 h. No significant difference was observed in particle size, zeta potential, and % entrapment efficiency of pilot-scale batch prepared by using rotational speed of 700 rpm. In conclusion, ionic complexation approach can be used to increase % EE of charged drugs into lipid nanoparticles.


Subject(s)
Dioctyl Sulfosuccinic Acid , Nanoparticles , Drug Carriers , Lipids , Particle Size , Quinolinium Compounds , Sulfates
SELECTION OF CITATIONS
SEARCH DETAIL
...