Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 13(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201192

ABSTRACT

The increasing rate of oil and gas production has contributed to a release of oil/water emulsion or mixtures to the environment, becoming a pressing issue. At the same time, pollution of the toxic cigarette butt has also become a growing concern. This study explored utilization of cigarette butt waste as a source of cellulose acetate-based (CA) polymer to develop a phase inverted membrane for treatment of oil/water emulsion and compare it with commercial polyvinylidene difluoride (PVDF) and polysulfone (PSF). Results show that the CA-based membrane from waste cigarette butt offers an eco-friendly material without compromising the separation efficiency, with a pore size range suitable for oil/water emulsion filtration with the rejection of >94.0%. The CA membrane poses good structural property similar to the established PVDF and PSF membranes with equally asymmetric morphology. It also poses hydrophilicity properties with a contact angle of 74.5°, lower than both PVDF and PSF membranes. The pore size of CA demonstrates that the CA is within the microfiltration range with a mean flow pore size of 0.17 µm. The developed CA membrane shows a promising oil/water emulsion permeability of 180 L m-2 h-1 bar-1 after five filtration cycles. However, it still suffers a high degree of irreversible fouling (>90.0%), suggesting potential future improvements in terms of membrane fouling management. Overall, this study demonstrates a sustainable approach to addressing oil/water emulsion pollution treated CA membrane from cigarette butt waste.

2.
Polymers (Basel) ; 13(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199714

ABSTRACT

This study investigated the polymer film composite of polyvinyl alcohol (PVA), trichlorethylene (TCE) and cresol red (CR) dye irradiated with gamma (γ) rays for potential application as radiation dosimetry. The film was prepared via the solvent-casting method with varying concentrations of TCE. Film samples were exposed to radiation from a γ-rays radiation source of 60Cobalt isotope. Color changes before and after γ-rays irradiation were observed, and the optical properties of the polymer films were investigated by spectrophotometry. Results show that increasing the radiation dose physically changed the color of the polymer film, from purple (pH > 8.8) without radiation (0 kGy) to yellow (almost transparent) (2.8 < pH < 7.2) at the highest dose (12 kGy). The concentration of acid formed due to irradiation increased with the increase in irradiation doses and at higher TCE content. The critical doses of PVA-TCE composites decreased linearly with the increase of TCE composition, facilitating an easy calibration process. The dose response at 438 nm increased exponentially with increasing radiation dose, but showed an opposite trend at the 575 nm band. An increase in the TCA concentration indicated a decrease in the absorption edge and an increase in activation energy, but both decreased for all TCE concentrations at higher doses. The energy gap for the direct and the indirect transitions decreased with increasing TCE concentration and γ-rays radiation dose. The results of this study demonstrated the potential application of PVA-TCE-CR polymer film as γ-rays irradiation dosimetry in a useful dose range of 0-12 kGy.

3.
Materials (Basel) ; 14(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070195

ABSTRACT

This paper introduces a new spark plasma sintering technique that is able to order crystalline anisotropy by in-series/in situ DC electric coupled magnetic field. The process control parameters have been investigated on the production of anisotropic BaFe12O19 magnets based on resulted remanence (Mr). Sintering holding time (H.T.), cooling rate (C.R.), pressure (P), and sintering temperature (S.T.) are optimized by Taguchi with L9 orthogonal array (OA). The remanent magnetization of nanocrystalline BaFe12O19 in parallel (Mrǁ) and perpendicular (MrꞱ) to the applied magnetic field was regarded as a measure of performance. The Taguchi study calculated optimum process parameters, which significantly improved the sintering process based on the confirmation tests of BaFe12O19 anisotropy. The magnetic properties in terms of Mrǁ and MrꞱ were greatly affected by sintering temperature and pressure according to ANOVA results. In addition, regression models were developed for predicting the Mrǁ as well as MrꞱ respectively.

4.
Polymers (Basel) ; 13(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810126

ABSTRACT

Wastewater containing oil/water emulsion has a serious ecological impact and threatens human health. The impact worsens as its volume increases. Oil/water emulsion needs to be treated before it is discharged or reused again for processing. A membrane-based process is considered attractive in effectively treating oil/water emulsion, but progress has been dampened by the membrane fouling issue. The objective of this study is to develop polyvinylidene fluoride (PVDF) membranes customized for oil/water emulsion separation by incorporating assembly of tannic acid (TA) and polyvinylpyrrolidone (PVP) in the polymer matrix. The results show that the assembly of TA/PVP complexation was achieved as observed from the change in colour during the phase inversion and as also proven from the characterization analyses. Incorporation of the TA/PVP assembly leads to enhanced surface hydrophilicity by lowering the contact angle from 82° to 47°. In situ assembly of the TA/PVP complex also leads to enhanced clean water permeability by a factor of four as a result of enhanced mean flow pore size from 0.2 to 0.9 µm. Owing to enhanced surface chemistry and structural advantages, the optimum hydrophilic PVDF/TA/PVP membrane poses permeability of 540.18 L/(m2 h bar) for oil/water emulsion filtration, three times higher than the pristine PVDF membrane used as the reference.

5.
Polymers (Basel) ; 13(7)2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33800592

ABSTRACT

This study assesses the optical properties and conductivity of PVA-H3PO4 (polyvinyl alcohol-phosphoric acid) polymer film blend irradiated by gamma (γ) rays. The PVA-H3PO4 polymer film blend was prepared by the solvent-casting method at H3PO4 concentrations of 75 v% and 85 v%, and then irradiated up to 25 kGy using γ-rays from the Cobalt-60 isotope source. The optical absorption spectrum was measured using an ultraviolet-visible spectrophotometer over a wavelength range of 200 to 700 nm. It was found that the absorption peaks are in three regions, namely two peaks in the ultraviolet region (310 and 350 nm) and one peak in the visible region (550 nm). The presence of an absorption peak after being exposed to hυ energy indicates a transition of electrons from HOMO to LUMO within the polymer chain. The study of optical absorption shows that the energy band gap (energy gap) depends on the radiation dose and the concentration of H3PO4 in the polymer film blend. The optical absorption, absorption edge, and energy gap decrease with increasing H3PO4 concentration and radiation dose. The interaction between PVA and H3PO4 blend led to an increase in the conductivity of the resulting polymer blend film.

SELECTION OF CITATIONS
SEARCH DETAIL