Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 10698, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37400545

ABSTRACT

Nanostructured surfaces based on silver nanoparticles decorated ZnO-CuO core-shell nanowire arrays, which can assure protection against various environmental factors such as water and bacteria were developed by combining dry preparation techniques namely thermal oxidation in air, radio frequency (RF) magnetron sputtering and thermal vacuum evaporation. Thus, high-aspect-ratio ZnO nanowire arrays were grown directly on zinc foils by thermal oxidation in air. Further ZnO nanowires were coated with a CuO layer by RF magnetron sputtering, the obtained ZnO-CuO core-shell nanowires being decorated with Ag nanoparticles by thermal vacuum evaporation. The prepared samples were comprehensively assessed from morphological, compositional, structural, optical, surface chemistry, wetting and antibacterial activity point of view. The wettability studies show that native Zn foil and ZnO nanowire arrays grown on it are featured by a high water droplet adhesion while ZnO-CuO core-shell nanowire arrays (before and after decoration with Ag nanoparticles) reveal a low water droplet adhesion. The antibacterial tests carried on Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium) emphasize that the nanostructured surfaces based on nanowire arrays present excellent antibacterial activity against both type of bacteria. This study proves that functional surfaces obtained by relatively simple and highly reproducible preparation techniques that can be easily scaled to large area are very attractive in the field of water repellent coatings with enhanced antibacterial function.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Nanowires , Silver , Nanowires/chemistry , Nanowires/ultrastructure , Metal Nanoparticles/chemistry , Silver/chemistry , Silver/pharmacology , Zinc Oxide/chemistry , Copper/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology
2.
Materials (Basel) ; 16(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36984360

ABSTRACT

Nanocomposite films based on macrocyclic compounds (zinc phthalocyanine (ZnPc) and 5,10,15,20-tetra(4-pyridyl) 21H,23H-porphyrin (TPyP)) and metal oxide nanoparticles (ZnO or CuO) were deposited by matrix-assisted pulsed laser evaporation (MAPLE). 1,4-dioxane was used as a solvent in the preparation of MAPLE targets that favor the deposition of films with a low roughness, which is a key feature for their integration in structures for optoelectronic applications. The influence of the addition of ZnO nanoparticles (~20 nm in size) or CuO nanoparticles (~5 nm in size) in the ZnPc:TPyP mixture and the impact of the added metal oxide amount on the properties of the obtained composite films were evaluated in comparison to a reference layer based only on an organic blend. Thus, in the case of nanocomposite films, the vibrational fingerprints of both organic compounds were identified in the infrared spectra, their specific strong absorption bands were observed in the UV-Vis spectra, and a quenching of the TPyP emission band was visible in the photoluminescence spectra. The morphological analysis evidenced agglomerated particles on the composite film surface, but their presence has no significant impact on the roughness of the MAPLE deposited layers. The current density-voltage (J-V) characteristics of the structures based on the nanocomposite films deposited by MAPLE revealed the critical role played by the layer composition and component ratio, an improvement in the electrical parameters values being achieved only for the films with a certain type and optimum amount of metal oxide nanoparticles.

3.
Nanomaterials (Basel) ; 12(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36500855

ABSTRACT

The properties of organic heterostructures with mixed layers made of arylenevinylene-based polymer donor and non-fullerene perylene diimide acceptor, deposited using Matrix Assisted Pulsed Laser Evaporation on flat Al and nano-patterned Al electrodes, were investigated. The Al layer electrode deposited on the 2D array of cylindrical nanostructures with a periodicity of 1.1 µm, developed in a polymeric layer using UV-Nanoimprint Lithography, is characterized by an inflorescence-like morphology. The effect of the nanostructuring on the optical and electrical properties was studied by comparison with those of the heterostructures based on a mixed layer with fullerene derivative acceptor. The low roughness of the mixed layer deposited on flat Al was associated with high reflectance. The nano-patterning, which was preserved in the mixed layer, determining the light trapping by multiple scattering, correlated with the high roughness and led to lower reflectance. A decrease was also revealed in photoluminescence emission both at UV and Vis excitation of the mixed layer, with the non-fullerene acceptor deposited on nano-patterned Al. An injector contact behavior was highlighted for all Al/mixed layer/ITO heterostructures by I-V characteristics in dark. The current increased, independently of acceptor (fullerene or non-fullerene), in the heterostructures with nano-patterned Al electrodes for shorter conjugation length polymer donors.

4.
Nanomaterials (Basel) ; 12(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36234427

ABSTRACT

Nanocomposites gained great attention from both fundamental scientific research and technological application perspectives emerging as a fascinating class of advanced functional materials, that can find applications in various areas such as electronics, energy, environmental protection, healthcare, etc [...].

5.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014630

ABSTRACT

Hierarchical functionalization of flax fibers with ZnO nanostructures was achieved by electroless deposition to improve the interfacial adhesion between the natural fibers and synthetic matrix in composite materials. The structural, morphological, thermal and wetting properties of the pristine and ZnO-coated flax fibers were investigated. Thus, the ZnO-coated flax fabric discloses an apparent contact angle of ~140° immediately after the placement of a water droplet on its surface. An assessment of the interfacial adhesion at the yarn scale was also carried out on the flax yarns coated with ZnO nanostructures. Thus, after the ZnO functionalization process, no significant degradation of the tensile properties of the flax yarns occurs. Furthermore, the single yarn fragmentation tests revealed a notable increase in the interfacial adhesion with an epoxy matrix, reductions of 36% and 9% in debonding and critical length values being measured compared to those of the pristine flax yarns, respectively. The analysis of the fracture morphology by scanning electron microscopy and X-ray microtomography highlighted the positive role of ZnO nanostructures in restraining debonding phenomena at the flax fibers/epoxy resin matrix interphase.

7.
Sci Rep ; 12(1): 6834, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35478207

ABSTRACT

An original photodetector system based on self-connected CuO-ZnO radial core-shell heterojunction nanowire arrays grown on metallic interdigitated electrodes, operating as visible-light photodetector was developed by combining simple preparation approaches. Metallic interdigitated electrodes were fabricated on Si/SiO2 substrates using a conventional photolithography process. Subsequently, a Cu layer was electrodeposited on top of the metallic interdigitated electrodes. The CuO nanowire arrays (core) were obtained by thermal oxidation in air of the Cu layer. Afterwards, a ZnO thin film (shell) was deposited by RF magnetron sputtering covering the surface of the CuO nanowires. The morphological, structural, compositional, optical, electrical and photoelectrical properties of the CuO nanowire arrays and CuO-ZnO core-shell nanowire arrays grown on metallic interdigitated electrodes were investigated. The performances of the devices were evaluated by assessing the figures of merit of the photodetectors based on self-connected CuO-ZnO core-shell heterojunction nanowire arrays grown on the metallic interdigitated electrodes. The radial p-n heterojunction formed between CuO and ZnO generates a type II band alignment that favors an efficient charge separation of photogenerated electron-hole pairs at the CuO-ZnO interface, suppressing their recombination and consequently enhancing the photoresponse and the photoresponsivity of the photodetectors. The electrical connections in the fabricated photodetector devices are made without any additional complex and time-consuming lithographic step through a self-connecting approach for CuO-ZnO core-shell heterojunction nanowire arrays grown directly onto the Ti/Pt metallic interdigitated electrodes. Therefore, the present study provides an accessible path for employing low dimensional complex structures in functional optoelectronic devices such as photodetectors.

8.
Materials (Basel) ; 16(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36614483

ABSTRACT

Lately, there is a growing interest in organic photovoltaic (OPV) cells due to the organic materials' properties and compatibility with various types of substrates. However, their efficiencies are low relative to the silicon ones; therefore, other ways (i.e., electrode micron/nanostructuring, synthesis of new organic materials, use of additives) to improve their performances are still being sought. In this context, we studied the behavior of the common organic bulk heterojunction (P3HT:PC70BM) deposited by matrix-assisted pulsed laser evaporation (MAPLE) with/without 0.3% of 1,8-diiodooctane (DIO) additive on flat and micro-patterned ITO substrates. The obtained results showed that in the MAPLE process, a small quantity of additive can modify the morphology of the organic films and decrease their roughness. Besides the use of the additive, the micro-patterning of the electrode leads to a greater increase in the absorption of the studied photovoltaic structures. The inferred values of the filling factors for the measured cells in ambient conditions range from 19% for the photovoltaic structures with no additive and without substrate patterning to 27% for the counterpart structures with patterning and a small quantity of additive.

9.
Materials (Basel) ; 14(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34947285

ABSTRACT

We investigated the optical and electrical properties of flexible single and bi-layer organic heterostructures prepared by vacuum evaporation with a p-type layer of arylenevinylene oligomers, based on carbazole, 3,3' bis(N hexylcarbazole)vinylbenzene = L13, or triphenylamine, 1,4 bis [4 (N,N' diphenylamino)phenylvinyl] benzene = L78, and an n-type layer of 5,10,15,20-tetra(4-pyrydil)21H,23H-porphyne = TPyP. Transparent conductor films of Al-doped ZnO (AZO) with high transparency, >90% for wavelengths > 400 nm, and low resistivity, between 6.9 × 10-4 Ω·cm and 23 × 10-4 Ω·cm, were deposited by pulsed laser deposition on flexible substrates of polyethylene terephthalate (PET). The properties of the heterostructures based on oligomers and zinc phthalocyanine (ZnPc) were compared, emphasizing the effect of the surface morphology. The measurements revealed a good absorption in the visible range of the PET/AZO/arylenevinylene oligomer/TPyP heterostructures and a typical injection contact behavior with linear (ZnPc, L78) or non-linear (L13) J-V characteristics in the dark, at voltages < 0.4 V. The heterostructure PET/AZO/L78/TPyP/Al showed a current density of ~1 mA/cm2 at a voltage of 0.3 V. The correlation between the roughness exponent, evaluated from the height-height correlation function, grain shape, and electrical behavior was analyzed. Consequently, the oligomer based on triphenylamine could be a promising replacement of donor ZnPc in flexible electronic applications.

11.
Nanomaterials (Basel) ; 11(5)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33925952

ABSTRACT

Continuing growth in global energy consumption and the growing concerns regarding climate change and environmental pollution are the strongest drivers of renewable energy deployment. Solar energy is the most abundant and cleanest renewable energy source available. Nowadays, photovoltaic technologies can be regarded as viable pathways to provide sustainable energy generation, the achievement attained in designing nanomaterials with tunable properties and the progress made in the production processes having a major impact in their development. Solar cells involving hybrid nanocomposite layers have, lately, received extensive research attention due to the possibility to combine the advantages derived from the properties of both components: flexibility and processability from the organic part and stability and optoelectronics features from the inorganic part. Thus, this review provides a synopsis on hybrid solar cells developed in the last decade which involve composite layers deposited by spin-coating, the most used deposition method, and matrix-assisted pulsed laser evaporation, a relatively new deposition technique. The overview is focused on the hybrid nanocomposite films that can use conducting polymers and metal phthalocyanines as p-type materials, fullerene derivatives and non-fullerene compounds as n-type materials, and semiconductor nanostructures based on metal oxide, chalcogenides, and silicon. A survey regarding the influence of various factors on the hybrid solar cell efficiency is given in order to identify new strategies for enhancing the device performance in the upcoming years.

12.
Nanomaterials (Basel) ; 10(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261138

ABSTRACT

The matrix-assisted pulsed laser evaporation (MAPLE) technique was used for depositing thin films based on a recently developed conjugated polymer, poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPP-DTT) and fullerene C60 blends. The targets used in the MAPLE process were obtained by freezing chloroform solutions with different DPP-DTT:C60 weight ratios, with the MAPLE deposition being carried at a low laser fluence, varying the number of laser pulses. The structural, morphological, optical, and electrical properties of the DPP-DTT:C60 blend layers deposited by MAPLE were investigated in order to emphasize the influence of the DPP-DTT:C60 weight ratio and the number of laser pulses on these features. The preservation of the chemical structure of both DPP-DTT and C60 during the MAPLE deposition process is confirmed by the presence of their vibrational fingerprints in the FTIR spectra of the organic thin films. The UV-VIS and photoluminescence spectra of the obtained organic layers reveal the absorption bands attributed to DPP-DTT and the emission bands associated with C60, respectively. The morphology of the DPP-DTT:C60 blend films consists of aggregates and fibril-like structures. Regardless the DPP-DTT:C60 weight ratio and the number of laser pulses used during the MAPLE process, the current-voltage characteristics recorded, under illumination, of all structures developed on the MAPLE deposited layers evidenced a photovoltaic cell behavior. The results proved that the MAPLE emerges as a viable technique for depositing thin films based on conjugated polymers featured by a complex structure that can be further used to develop devices for applications in the solar cell area.

13.
Sci Rep ; 10(1): 20960, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33262424

ABSTRACT

Biopolymers provide versatile platforms for designing naturally-derived wound care dressings through eco-friendly pathways. Eggshell membrane (ESM), a widely available, biocompatible biopolymer based structure features a unique 3D porous interwoven fibrous protein network. The ESM was functionalized with inorganic compounds (Ag, ZnO, CuO used either separately or combined) using a straightforward deposition technique namely radio frequency magnetron sputtering. The functionalized ESMs were characterized from morphological, structural, compositional, surface chemistry, optical, cytotoxicity and antibacterial point of view. It was emphasized that functionalization with a combination of metal oxides and exposure to visible light results in a highly efficient antibacterial activity against Escherichia coli when compared to the activity of individual metal oxide components. It is assumed that this is possible due to the fact that an axial p-n junction is created by joining the two metal oxides. This structure separates into components the charge carrier pairs promoted by visible light irradiation that further can influence the generation of reactive oxygen species which ultimately are responsible for the bactericide effect. This study proves that, by employing inexpensive and environmentally friendly materials (ESM and metal oxides) and fabrication techniques (radio frequency magnetron sputtering), affordable antibacterial materials can be developed for potential applications in chronic wound healing device area.


Subject(s)
Anti-Bacterial Agents/pharmacology , Copper/chemistry , Egg Shell/chemistry , Escherichia coli/drug effects , Light , Zinc Oxide/chemistry , Animals , Biofilms/drug effects , Egg Shell/drug effects , Egg Shell/radiation effects , Escherichia coli/radiation effects , Escherichia coli/ultrastructure , Membranes , Microbial Sensitivity Tests , Optical Imaging , Photoelectron Spectroscopy , X-Ray Diffraction
14.
Nanomaterials (Basel) ; 10(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198133

ABSTRACT

Core-double shell nylon-ZnO/polypyrrole electrospun nanofibers were fabricated by combining three straightforward methods (electrospinning, sol-gel synthesis and electrodeposition). The hybrid fibrous organic-inorganic nanocomposite was obtained starting from freestanding nylon 6/6 nanofibers obtained through electrospinning. Nylon meshes were functionalized with a very thin, continuous ZnO film by a sol-gel process and thermally treated in order to increase its crystallinity. Further, the ZnO coated networks were used as a working electrode for the electrochemical deposition of a very thin, homogenous polypyrrole layer. X-ray diffraction measurements were employed for characterizing the ZnO structures while spectroscopic techniques such as FTIR and Raman were employed for describing the polypyrrole layer. An elemental analysis was performed through X-ray microanalysis, confirming the expected double shell structure. A detailed micromorphological characterization through FESEM and TEM assays evidenced the deposition of both organic and inorganic layers. Highly transparent, flexible due to the presence of the polymer core and embedding a semiconducting heterojunction, such materials can be easily tailored and integrated in functional platforms with a wide range of applications.

15.
Sci Rep ; 10(1): 18690, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33122742

ABSTRACT

CuO-ZnO core-shell radial heterojunction nanowire arrays were obtained by a simple route which implies two cost-effective methods: thermal oxidation in air for preparing CuO nanowire arrays, acting as a p-type core and RF magnetron sputtering for coating the surface of the CuO nanowires with a ZnO thin film, acting as a n-type shell. The morphological, structural, optical and compositional properties of the CuO-ZnO core-shell nanowire arrays were investigated. In order to analyse the electrical and photoelectrical properties of the metal oxide nanowires, single CuO and CuO-ZnO core-shell nanowires were contacted by employing electron beam lithography (EBL) and focused ion beam induced deposition (FIBID). The photoelectrical properties emphasize that the p-n radial heterojunction diodes based on single CuO-ZnO core-shell nanowires behave as photodetectors, evidencing a time-depending photoresponse under illumination at 520 nm and 405 nm wavelengths. The performance of the photodetector device was evaluated by assessing its key parameters: responsivity, external quantum efficiency and detectivity. The results highlighted that the obtained CuO-ZnO core-shell nanowires are emerging as potential building blocks for a next generation of photodetector devices.

16.
Nanomaterials (Basel) ; 10(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150846

ABSTRACT

Matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit hybrid nanocomposite thin films based on cobalt phthalocyanine (CoPc), C60 fullerene and ZnO nanoparticles. The inorganic nanoparticles, with a size of about 20 nm, having the structural and optical properties characteristic of ZnO, were chemically synthesized by a simple precipitation method. Furthermore, ZnO nanoparticles were dispersed in a dimethyl sulfoxide solution in which CoPc and C60 had been dissolved, ready for the freezing MAPLE target. The effect of the concentration of ZnO nanoparticles on the structural, morphological, optical and electrical properties of the CoPc:C60:ZnO hybrid nanocomposite layers deposited by MAPLE was evaluated. The infrared spectra of the hybrid nanocomposite films confirm that the CoPc and C60 preserve their chemical structure during the laser deposition process. The CoPc optical signature is recognized in the ultraviolet-visible (UV-Vis) spectra of the obtained layers, these being dominated by the absorption bands associated to this organic compound while the ZnO optical fingerprint is identified in the photoluminescence spectra of the prepared layers, these disclosing the emission bands linked to this inorganic semiconductor. The hybrid nanocomposite layers exhibit globular morphology, which is typical for the thin films deposited by MAPLE. Current-voltage (J-V) characteristics of the structures developed on CoPc:C60:ZnO layers reveal that the addition of an appropriate amount of ZnO nanoparticles in the CoPc:C60 mixture leads to a more efficient charge transfer between the organic and inorganic components. Due to their photovoltaic effect, structures featuring such hybrid nanocomposite thin films deposited by MAPLE can have potential applications in the field of photovoltaic devices.

17.
Materials (Basel) ; 13(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31906422

ABSTRACT

In this work, ZnO-CdS composite powders synthesized by a simple chemical precipitation method were thoroughly characterized. The morphological, structural, compositional, photocatalytical, and biological properties of the prepared composites were investigated in comparison with those of the pristine components and correlated with the CdS concentration. ZnO-CdS composites contain flower-like structures, their size being tuned by the CdS amount added during the chemical synthesis. The photocatalytic activity of the composites was analyzed under UV irradiation using powders impregnated with methylene blue; the tests confirming that the presence of CdS along the ZnO in composites can improve the dye discoloration. The biological properties such as antioxidant capacity, antibacterial activity, and cytotoxicity of the ZnO, CdS, and ZnO-CdS composites were evaluated. Thus, the obtained composites presented medium antioxidant effect, biocidal activity against Escherichia coli, and no toxicity (at concentrations less than 0.05 mg/mL for composites with a low CdS amount) for human fibroblast cells. Based on these results, such composites can be used as photocatalytic and/or biocidal additives for photoactive coatings, paints, or epoxy floors, which in their turn can provide a cleaner and healthier environment.

18.
Sci Rep ; 9(1): 17268, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31754165

ABSTRACT

Staggered gap radial heterojunctions based on ZnO-CuxO core-shell nanowires are used as water stable photocatalysts to harvest solar energy for pollutants removal. ZnO nanowires with a wurtzite crystalline structure and a band gap of approximately 3.3 eV are obtained by thermal oxidation in air. These are covered with an amorphous CuxO layer having a band gap of 1.74 eV and subsequently form core-shell heterojunctions. The electrical characterization of the ZnO pristine and ZnO-CuxO core-shell nanowires emphasizes the charge transfer phenomena at the junction and at the interface between the nanowires and water based solutions. The methylene blue degradation mechanism is discussed taking into consideration the dissolution of ZnO in water based solutions for ZnO nanowires and ZnO-CuxO core-shell nanowires with different shell thicknesses. An optimum thickness of the CuxO layer is used to obtain water stable photocatalysts, where the ZnO-CuxO radial heterojunction enhances the separation and transport of the photogenerated charge carriers when irradiating with UV-light, leading to swift pollutant degradation.

19.
ACS Appl Mater Interfaces ; 11(22): 19867-19877, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31081608

ABSTRACT

The present work describes a new simple procedure for the direct immobilization of biomolecules on Ni electrodes using magnetic Ni nanoparticles (NiNPs) as biomolecule carriers. Ni electrodes were fabricated by electroplating, and NiNPs were chemically synthesized. The chemical composition, crystallinity, and granular size of Ni electrodes, NiNP, and NiNP-modified Ni electrodes (NiNP/Ni) were determined by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of Ni electrodes by cyclic voltammetry and electrochemical impedance spectroscopy confirmed the existence of nickel oxides, hydroxides, and oxohydroxide films at the surface of Ni. Magnetic characterization and micromagnetic simulations were performed in order to prove that the magnetic force is responsible for the immobilization process. Further, Ni electrodes were employed as amperometric sensors for the detection of hydrogen peroxide because it is an important performance indicator for a material to be applied in biosensing. The working principle for magnetic immobilization of the enzyme-functionalized NiNP, without the use of external magnetic sources, was demonstrated for glucose oxidase (GOx) as a model enzyme. XPS results enabled to identify the presence of GOx attached to the NiNP (GOx-NiNP) on Ni electrodes. Finally, glucose detection and quantification were evaluated with the newly developed GOx-NiNP/Ni biosensor by amperometry at different potentials, and control experiments at different electrode materials in the presence and absence of NiNP demonstrated their importance in the biosensor architecture.


Subject(s)
Biosensing Techniques/methods , Electrodes , Nanoparticles/chemistry , Electrochemistry , Glucose Oxidase/metabolism , Microscopy, Electron, Scanning , X-Ray Diffraction
20.
Sci Rep ; 9(1): 5553, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30944366

ABSTRACT

ZnO-CuxO core-shell radial heterojunction nanowire arrays were fabricated by a straightforward approach which combine two simple, cost effective and large-scale preparation methods: (i) thermal oxidation in air of a zinc foil for obtaining ZnO nanowire arrays and (ii) radio frequency magnetron sputtering for covering the surface of the ZnO nanowires with a CuxO thin film. The structural, compositional, morphological and optical properties of the high aspect ratio ZnO-CuxO core-shell nanowire arrays were investigated. Individual ZnO-CuxO core-shell nanowires were contacted with Pt electrodes by means of electron beam lithography technique, diode behaviour being demonstrated. Further it was found that these n-p radial heterojunction diodes based on single ZnO-CuxO nanowires exhibit a change in the current under UV light illumination and therefore behaving as photodetectors.

SELECTION OF CITATIONS
SEARCH DETAIL
...