Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 4(2): e4551, 2009.
Article in English | MEDLINE | ID: mdl-19234601

ABSTRACT

BACKGROUND: Artemisinin combination treatments (ACT) are recommended as first line treatment for falciparum malaria throughout the malaria affected world. We reviewed the efficacy of a 3-day regimen of mefloquine and artesunate regimen (MAS(3)), over a 13 year period of continuous deployment as first-line treatment in camps for displaced persons and in clinics for migrant population along the Thai-Myanmar border. METHODS AND FINDINGS: 3,264 patients were enrolled in prospective treatment trials between 1995 and 2007 and treated with MAS(3). The proportion of patients with parasitaemia persisting on day-2 increased significantly from 4.5% before 2001 to 21.9% since 2002 (p<0.001). Delayed parasite clearance was associated with increased risk of developing gametocytaemia (AOR = 2.29; 95% CI, 2.00-2.69, p = 0.002). Gametocytaemia on admission and carriage also increased over the years (p = 0.001, test for trend, for both). MAS(3) efficacy has declined slightly but significantly (Hazards ratio 1.13; 95% CI, 1.07-1.19, p<0.001), although efficacy in 2007 remained well within acceptable limits: 96.5% (95% CI, 91.0-98.7). The in vitro susceptibility of P. falciparum to artesunate increased significantly until 2002, but thereafter declined to levels close to those of 13 years ago (geometric mean in 2007: 4.2 nM/l; 95% CI, 3.2-5.5). The proportion of infections caused by parasites with increased pfmdr1 copy number rose from 30% (12/40) in 1996 to 53% (24/45) in 2006 (p = 0.012, test for trend). CONCLUSION: Artesunate-mefloquine remains a highly efficacious antimalarial treatment in this area despite 13 years of widespread intense deployment, but there is evidence of a modest increase in resistance. Of particular concern is the slowing of parasitological response to artesunate and the associated increase in gametocyte carriage.


Subject(s)
Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Mefloquine/therapeutic use , Adolescent , Antimalarials/therapeutic use , Artesunate , Clinical Trials as Topic , Drug Resistance , Female , Humans , Malaria, Falciparum/epidemiology , Male , Retrospective Studies , Thailand , Treatment Outcome
2.
Antimicrob Agents Chemother ; 53(4): 1509-15, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19164150

ABSTRACT

Mefloquine is widely used in combination with artemisinin derivatives for the treatment of falciparum malaria. Mefloquine resistance in Plasmodium falciparum has been related to increased copy numbers of multidrug-resistant gene 1 (pfmdr1). We studied the ex vivo dynamics of pfmdr1 gene amplification in culture-adapted P. falciparum in relation to mefloquine resistance and parasite fitness. A Thai P. falciparum isolate (isolate TM036) was assessed by the use of multiple genetic markers as a single genotype. Resistance was selected by exposure to stepwise increasing concentrations of mefloquine up to 30 ng/ml in continuous culture. The pfmdr1 gene copy numbers increased as susceptibility to mefloquine declined (P = 0.03). No codon mutations at positions 86, 184, 1034, 1042, and 1246 in the pfmdr1 gene were detected. Two subclones of selected parasites (average copy numbers, 2.3 and 3.1, respectively) showed a fitness disadvantage when they were grown together with the original parasites containing a single pfmdr1 gene copy in the absence of mefloquine; the multiplication rates were 6.3% and 8.7% lower, respectively (P < 0.01). Modeling of the dynamics of the pfmdr1 copy numbers over time in relation to the relative fitness of the parasites suggested that net pfmdr1 gene amplification from one to two copies occurs once in every 10(8) parasites and that amplification from two to three copies occurs once in every 10(3) parasites. pfmdr1 gene amplification in P. falciparum is a frequent event and confers mefloquine resistance. Parasites with multiple copies of the pfmdr1 gene have decreased survival fitness in the absence of drug pressure.


Subject(s)
Antimalarials/pharmacology , Gene Amplification , Malaria, Falciparum/drug therapy , Mefloquine/pharmacology , Multidrug Resistance-Associated Proteins/genetics , Animals , Gene Dosage , Genotype , Malaria, Falciparum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...