Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 102(2-1): 022901, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32942352

ABSTRACT

We present a systematic numerical investigation concerning the combined effects of sliding friction and particle shape (i.e., angularity) parameters on the shear strength and microstructure of granular packings. Sliding friction at contacts varied from 0 (frictionless particles) to 0.7, and the particles were irregular polygons with an increasing number of sides, ranging from triangles to disks. We find that the effect of local friction on shear strength follows the same trend for all shapes. Strength first increases with local friction and then saturates at a shape-dependent value. In contrast, the effect of angularity varies, depending on the level of sliding friction. For low friction values (i.e., under 0.3), the strength first increases with angularity and then declines for the most angular shapes. For high friction values, strength systematically increases with angularity. At the microscale, we focus on the connectivity and texture of the contact and force networks. In general terms, increasing local friction causes these networks to be less connected and more anisotropic. In contrast, increasing particle angularity may change the network topology in different directions, directly affecting the macroscopic shear strength. These analyses and data constitute a first step toward understanding the joint effect of local variables such as friction and grain shape on the macroscopic rheology of granular systems.

2.
Phys Rev E ; 101(6-1): 062901, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688473

ABSTRACT

This article presents an analysis of the shear strength of numerical samples composed of polyhedra presenting a grain size dispersion. Previous numerical studies using, for instance, disks, polygons, and spheres, have consistently shown that microstructural properties linked to the fabric and force transmission allow granular media to exhibit a constant shear resistance although packing fraction can dramatically change as a broader grain-size distribution is considered. To have a complete picture of such behavior, we developed a set of numerical experiments in the frame of the discrete element method to test the shear strength of polydisperse samples composed of polyhedral grains. Although the contact networks and force transmission are quite more complex for such generalized grain shape, we can verify that the shear strength independence still holds up for 3D regular polyhedra. We make a particular focus upon the role of different contact types in the assemblies and their relative contributions to the granular connectivity and sample strength. The invariance of shear strength at the macroscopic scale results deeply linked to fine compensations at the microstructural level involving geometrical and force anisotropies of the assembly.

3.
Phys Rev Lett ; 124(20): 208003, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32501060

ABSTRACT

The compaction behavior of deformable grain assemblies beyond jamming remains bewildering, and existing models that seek to find the relationship between the confining pressure P and solid fraction ϕ end up settling for empirical strategies or fitting parameters. Using a coupled discrete-finite element method, we analyze assemblies of highly deformable frictional grains under compression. We show that the solid fraction evolves nonlinearly from the jamming point and asymptotically tends to unity. Based on the micromechanical definition of the granular stress tensor, we develop a theoretical model, free from ad hoc parameters, correctly mapping the evolution of ϕ with P. Our approach unveils the fundamental features of the compaction process arising from the joint evolution of grain connectivity and the behavior of single representative grains. This theoretical framework also allows us to deduce a bulk modulus equation showing an excellent agreement with our numerical data.

4.
Phys Rev E ; 100(1-1): 012904, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31499800

ABSTRACT

Using bi-dimensional discrete element simulations, the shear strength and microstructure of granular mixtures composed of particles of different shapes are systematically analyzed as a function of the proportion of grains of a given number of sides and the combination of different shapes (species) in one sample. We varied the angularity of the particles by varying the number of sides of the polygons from 3 (triangles) up to 20 (icosagons) and disks. The samples analyzed were built keeping in mind the following cases: (1) increase of angularity and species starting from disks; (2) decrease of angularity and increase of species starting from triangles; (3) random angularity and increase of species starting from disks and from polygons. The results show that the shear strength vary monotonically with increasing numbers of species (it may increase or decrease), even in the random mixtures (case 3). At the micro-scale, the variation in shear strength as a function of the number of species is due to different mechanisms depending on the cases analyzed. It may result from the increase of both the geometrical and force anisotropies, from only a decrease of frictional anisotropy, or from compensation mechanisms involving geometrical and force anisotropies.

5.
Phys Rev E ; 94(4-1): 042901, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27841540

ABSTRACT

We analyze the shear strength and microstructure of binary granular mixtures consisting of disks and elongated particles by varying systematically both the mixture ratio and degree of homogeneity (from homogeneous to fully segregated). The contact dynamics method is used for numerical simulations with rigid particles interacting by frictional contacts. A counterintuitive finding of this work is that the shear strength, packing fraction, and, at the microscopic scale, the fabric, force, and friction anisotropies of the contact network are all nearly independent of the degree of homogeneity. In other words, homogeneous mixtures have the same strength properties as segregated packings of the two particle shapes. In contrast, the shear strength increases with the proportion of elongated particles correlatively with the increase of the corresponding force and fabric anisotropies. By a detailed analysis of the contact network topology, we show that various contact types contribute differently to force transmission and friction mobilization.

6.
Soft Matter ; 10(43): 8603-7, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25249195

ABSTRACT

The macroscopic mechanical behaviour of granular materials is governed by microscopic features at the particle scale. Photoelasticimetry is a powerful method for measuring shear stresses in particles made from birefringent materials. As a complementary method, we here identify the hydrostatic stress networks through thermoelastic stress analysis using infrared thermographic measurements. Experiments are performed on two-dimensional cohesionless monodisperse granular materials composed of about 1200 cylinders comprising two constitutive materials. We show that the experimental hydrostatic stress distributions follow statistical laws which are in agreement with simulations performed using molecular dynamics, except in one case exhibiting piecewise periodic stacking. Polydisperse cases are then processed. The measurement of hydrostatic stress networks using this technique opens new prospects for the analysis of granular materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...