Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(37): 33255-33265, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744782

ABSTRACT

In this study, we report a facile one-step chemical method to synthesize reduced titanium dioxide (TiO2) nanotube arrays (NTAs) with point defects. Treatment with NaBH4 introduces oxygen vacancies (OVs) in the TiO2 lattice. Chemical analysis and optical studies indicate that the OV density can be significantly increased by changing reduction time treatment, leading to higher optical transmission of the TiO2 NTAs and retarded carrier recombination in the photoelectrochemical process. A cathodoluminescence (CL) study of reduced TiO2 (TiO2-x) NTAs revealed that OVs contribute significantly to the emission bands in the visible range. It was found that the TiO2 NTAs reduced for a longer duration exhibited a higher concentration of OVs. A typical CL spectrum of TiO2 was deconvoluted to four Gaussian components, assigned to F, F+, and Ti3+ centers. X-ray photoelectron spectroscopy measurements were used to support the change in the surface chemical bonding and electronic valence band position in TiO2. Electron paramagnetic resonance spectra confirmed the presence of OVs in the TiO2-x sample. The prepared TiO2-x NTAs show an enhanced photocurrent for water splitting due to pronounced light absorption in the visible region, enhanced electrical conductivity, and improved charge transportation.

2.
Sci Rep ; 12(1): 13184, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35915217

ABSTRACT

We report on the dynamics of a magnetic-field-driven antiferromagnetic-to-paramagnetic quantum phase transition in monocrystalline Ce3Al via transverse-field muon spin rotation (TF-µSR) experiments down to low temperature of [Formula: see text] 80 mK. The quantum phase transition is of a spin-flip type and takes place on the Ce-Al magnetic chains as a result of competition between the indirect exchange and the Zeeman interaction of the Ce moments with the external field, applied along the chain direction (also the direction of the antiferromagnetic axis). The Ce moments are not static at [Formula: see text] 0, but fluctuate in their direction due to the Heisenberg uncertainty principle. Upon applying the magnetic field sweep, the fluctuations exhibit the largest amplitude at the quantum critical point, manifested in a maximum of the muon transverse relaxation rate at the critical field. The quantum nature of fluctuations observed in the TF-µSR experiments is reflected in the temperature independence of the average local magnetic field component along the external magnetic field at the muon stopping site(s) and the muon transverse relaxation rate within the investigated temperature range 1.5 K-80 mK. Quantum fluctuations are fast on the muon Larmor frequency scale, [Formula: see text] 10-10 s.

3.
J Phys Condens Matter ; 29(23): 235701, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28430106

ABSTRACT

We explore the thermodynamic properties of the layered copper(II) carbodiimide CuNCN by heat-capacity measurements and investigate the corresponding thermal atomic motions by means of neutron powder diffraction as well as inelastic neutron scattering. The experiments are complemented by a combination of density-functional calculations, phonon analysis and analytic theory. The existence of a soft flexural mode-bending of the layers, characteristic for the material structure-is established in the phonon spectrum of CuNCN by giving characteristic temperature-dependent contributions to the heat capacity and atomic displacement parameters. The agreement with the neutron data allows us to extract a residual-on top of the lattice-presumably spinon contribution to the heat capacity [Formula: see text], speaking in favor of the spin-liquid picture of the electronic phases of CuNCN.

4.
Beilstein J Nanotechnol ; 6: 831-44, 2015.
Article in English | MEDLINE | ID: mdl-25977854

ABSTRACT

The influence of the reaction conditions during the transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons on the phase composition, the morphology, the appearance of the nanoribbon surfaces and their optical properties was investigated. The transformations were performed (i) through a heat treatment in oxidative and reductive atmospheres in the temperature range of 400-650 °C, (ii) through a hydrothermal treatment in neutral and basic environments at 160 °C, and (iii) through a microwave-assisted hydrothermal treatment in a neutral environment at 200 °C. Scanning electron microscopy investigations showed that the hydrothermal processing significantly affected the nanoribbon surfaces, which became rougher, while the transformations based on calcination in either oxidative or reductive atmospheres had no effect on the morphology or on the surface appearance of the nanoribbons. The transformations performed in the reductive atmosphere, an NH3(g)/Ar(g) flow, and in the ammonia solution led to nitrogen doping. The nitrogen content increased with an increasing calcination temperature, as was determined by X-ray photoelectron spectroscopy. According to electron paramagnetic resonance measurements the calcination in the reductive atmosphere also resulted in a partial reduction of Ti(4+) to Ti(3+). The photocatalytic performance of the derived TiO2 NRs was estimated on the basis of the photocatalytic oxidation of isopropanol. After calcinating in air, the photocatalytic performance of the investigated TiO2 NRs increased with an increased content of anatase. In contrast, the photocatalytic performance of the N-doped TiO2 NRs showed no dependence on the calcination temperature. An additional comparison showed that the N-doping significantly suppressed the photocatalytic performance of the TiO2 NRs, i.e., by 3 to almost 10 times, in comparison with the TiO2 NRs derived by calcination in air. On the other hand, the photocatalytic performance of the hydrothermally derived TiO2 NRs was additionally improved by a subsequent heat treatment in air.

5.
Chem Commun (Camb) ; (32): 3386-8, 2007 Aug 28.
Article in English | MEDLINE | ID: mdl-18019506

ABSTRACT

Density functional (DFT) calculations, high-temperature electron paramagnetic resonance (EPR) and transmission electron microscopy (TEM) results suggest that thermal homolysis of C59HN involves a remarkably stable intermediate C59N-C59HN* structure characterised by charge redistribution from a C59N* radical to a bonded C59HN.

SELECTION OF CITATIONS
SEARCH DETAIL
...