Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Protoplasma ; 217(1-3): 137-45, 2001.
Article in English | MEDLINE | ID: mdl-11732331

ABSTRACT

Cytochrome b561 (cyt b561) is a trans-membrane cytochrome probably ubiquitous in plant cells. In vitro, it is readily reduced by ascorbate or by juglonol, which in plasma membrane (PM) preparations from plant tissues is efficiently produced by a PM-associated NAD(P)H:quinone reductase activity. In bean hypocotyl PM, juglonol-reduced cyt b561 was not oxidized by hydrogen peroxide alone, but hydrogen peroxide led to complete oxidation of the cytochrome in the presence of a peroxidase found in apoplastic extracts of bean hypocotyls. This peroxidase active on cyt b561 was purified from the apoplastic extract and identified as an ascorbate peroxidase of the cytosolic type. The identification was based on several grounds, including the ascorbate peroxidase activity (albeit labile), the apparent molecular mass of the subunit of 27 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the dimeric native structure, the typical spectral properties of a heme-containing peroxidase, and an N-terminal sequence strongly conserved with cytosolic ascorbate peroxidases of plants. Cyt b561 used in the experiments was purified from bean hypocotyl PM and juglonol was enzymatically produced by recombinant NAD(P)H:quinone reductase. It is shown that NADPH, NAD(P)H:quinone reductase, juglone, cyt b561, the peroxidase interacting with cyt b561, and H2O2, in this order, constitute an artificial electron transfer chain in which cyt b561 is indirectly reduced by NADPH and indirectly oxidized by H2O2.


Subject(s)
Cytochrome b Group/metabolism , Electron Transport , Hypocotyl/metabolism , Peroxidases/metabolism , Phaseolus/metabolism , Amino Acid Sequence , Ascorbate Peroxidases , Ascorbic Acid/pharmacology , Cell Membrane/metabolism , Chromatography , Hydrogen Peroxide/pharmacology , Hypocotyl/enzymology , Isoenzymes/metabolism , Molecular Sequence Data , Molecular Weight , Oxidants/pharmacology , Oxidation-Reduction , Peroxidases/chemistry , Peroxidases/genetics , Peroxidases/isolation & purification , Phaseolus/genetics , Sequence Alignment , Spectrophotometry
2.
Arch Biochem Biophys ; 363(2): 301-8, 1999 Mar 15.
Article in English | MEDLINE | ID: mdl-10068452

ABSTRACT

A novel NADH-dependent, soluble flavoreductase of 60 kDa, active toward ferric chelates and quinones, has been purified from maize seedlings. Two closely related isoforms were separated. The two isoforms are similar in several biochemical features, with the exception of the apparent molecular mass of their subunits (29 and 31 kDa, respectively). They are homodimers in the native state, they bind FAD as the prosthetic group and show strong preference for NADH over NADPH as the electron donor. Ferric chelates (chiefly ferric citrate, Km 3-5 x 10(-5) M; kcat/Km 3.4-3.7 x 10(5) M-1 s-1), and some quinones (benzoquinone, coenzyme Q-0, and juglone) are used as electron acceptors. Enzymatic reduction of benzoquinone occurs with formation of radical semiquinones. Both soluble ferric chelate reductase isoforms are strongly inhibited by p-hydroxymercuribenzoic acid (I50 5 nM) and by cibachron blue, the latter giving nonlinear inhibition. It is suggested that soluble ferric chelate reductase might be involved in the symplastic reduction of iron chelates which is required for the assembly of iron-containing macromolecules such as cytochromes and ferritin.


Subject(s)
FMN Reductase , Ferric Compounds/metabolism , Flavin-Adenine Dinucleotide/metabolism , NADH, NADPH Oxidoreductases/chemistry , NAD/metabolism , Plants/enzymology , Zea mays/enzymology , Chromatography, Affinity , Electrophoresis, Polyacrylamide Gel , Isoenzymes , Molecular Weight , NADH, NADPH Oxidoreductases/isolation & purification , NADH, NADPH Oxidoreductases/metabolism , Oxidation-Reduction , Plants/chemistry , Quinones/metabolism , Zea mays/chemistry
3.
Plant Physiol ; 114(2): 737-746, 1997 Jun.
Article in English | MEDLINE | ID: mdl-12223742

ABSTRACT

Quinone oxidoreductase activities dependent on pyridine nucleotides are associated with the plasma membrane (PM) in zucchini (Cucurbita pepo L.) hypocotyls. In the presence of NADPH, lipophilic ubiquinone homologs with up to three isoprenoid units were reduced by intact PM vesicles with a Km of 2 to 7 [mu]M. Affinities for both NADPH and NADH were similar (Km of 62 and 51 [mu]M, respectively). Two NAD(P)H:quinone oxidoreductase forms were identified. The first, labeled as peak I in gel-filtration experiments, behaves as an intrinsic membrane complex of about 300 kD, it slightly prefers NADH over NADPH, it is markedly sensitive to the inhibitor diphenylene iodonium, and it is active with lipophilic quinones. The second form (peak II) is an NADPH-preferring oxidoreductase of about 90 kD, weakly bound to the PM. Peak II is diphenylene iodonium-insensitive and resembles, in many properties, the soluble NAD(P)H:quinone oxidoreductase that is also present in the same tissue. Following purification of peak I, however, the latter gave rise to a quinone oxidoreductase of the soluble type (peak II), based on substrate and inhibitor specificities and chromatographic and electrophoretic evidence. It is proposed that a redox protein of the same class as the soluble NAD(P)H:quinone oxidoreductase (F. Sparla, G. Tedeschi, and P. Trost [1996] Plant Physiol. 112:249-258) is a component of the diphenylene iodonium-sensitive PM complex capable of reducing lipophilic quinones.

SELECTION OF CITATIONS
SEARCH DETAIL
...