Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Neurosci Adv ; 6: 23982128221097568, 2022.
Article in English | MEDLINE | ID: mdl-35615059

ABSTRACT

In the newborn brain, moderate-severe hypoxia-ischaemia induces glutamate excitotoxicity and inflammation, possibly via dysregulation of candidate astrocytic glutamate transporter (Glt1) and pro-inflammatory cytokines (e.g. Tnfα, Il1ß, Il6). Epigenetic mechanisms may mediate dysregulation. Hypotheses: (1) hypoxia-ischaemia dysregulates mRNA expression of these candidate genes; (2) expression changes in Glt1 are mediated by DNA methylation changes; and (3) methylation values in brain and blood are correlated. Seven-day-old rat pups (n = 42) were assigned to nine groups based on treatment (for each timepoint: naïve (n = 3), sham (n = 3), hypoxia-ischaemia (n = 8) and timepoint for tissue collection (6, 12 and 24 h post-hypoxia). Moderate hypoxic-ischemic brain injury was induced via ligation of the left common carotid artery followed by 100 min hypoxia (8% O2, 36°C). mRNA was quantified in cortex and hippocampus for the candidate genes, myelin (Mbp), astrocytic (Gfap) and neuronal (Map2) markers (qPCR). DNA methylation was measured for Glt1 in cortex and blood (bisulphite pyrosequencing). Hypoxia-ischaemia induced pro-inflammatory cytokine upregulation in both brain regions at 6 h. This was accompanied by gene expression changes potentially indicating onset of astrogliosis and myelin injury. There were no significant changes in expression or promoter DNA methylation of Glt1. This pilot study supports accumulating evidence that hypoxia-ischaemia causes neuroinflammation in the newborn brain and prioritises further expression and DNA methylation analyses focusing on this pathway. Epigenetic blood biomarkers may facilitate identification of high-risk newborns at birth, maximising chances of neuroprotective interventions.

2.
Front Physiol ; 10: 417, 2019.
Article in English | MEDLINE | ID: mdl-31068830

ABSTRACT

Preterm birth complications are the leading cause of child death worldwide and a top global health priority. Among the survivors, the risk of life-long disabilities is high, including cerebral palsy and impairment of movement, cognition, and behavior. Understanding the molecular mechanisms of preterm brain injuries is at the core of future healthcare improvements. Glutamate excitotoxicity is a key mechanism in preterm brain injury, whereby the accumulation of extracellular glutamate damages the delicate immature oligodendrocytes and neurons, leading to the typical patterns of injury seen in the periventricular white matter. Glutamate excitotoxicity is thought to be induced by an interaction between environmental triggers of injury in the perinatal period, particularly cerebral hypoxia-ischemia and infection/inflammation, and developmental and genetic vulnerabilities. To avoid extracellular build-up of glutamate, the brain relies on rapid uptake by sodium-dependent glutamate transporters. Astrocytic excitatory amino acid transporter 2 (EAAT2) is responsible for up to 95% of glutamate clearance, and several lines of evidence suggest that it is essential for brain functioning. While in the adult EAAT2 is predominantly expressed by astrocytes, EAAT2 is transiently upregulated in the immature oligodendrocytes and selected neuronal populations during mid-late gestation, at the peak time for preterm brain injury. This developmental upregulation may interact with perinatal hypoxia-ischemia and infection/inflammation and contribute to the selective vulnerability of the immature oligodendrocytes and neurons in the preterm brain. Disruption of EAAT2 may involve not only altered expression but also impaired function with reversal of transport direction. Importantly, elevated EAAT2 levels have been found in the reactive astrocytes and macrophages of human infant post-mortem brains with severe white matter injury (cystic periventricular leukomalacia), potentially suggesting an adaptive mechanism against excitotoxicity. Interestingly, EAAT2 is suppressed in animal models of acute hypoxic-ischemic brain injury at term, pointing to an important and complex role in newborn brain injuries. Enhancement of EAAT2 expression and transport function is gathering attention as a potential therapeutic approach for a variety of adult disorders and awaits exploration in the context of the preterm brain injuries.

3.
Vet Ophthalmol ; 17(2): 126-30, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24255994

ABSTRACT

OBJECTIVE: To assess the extent of progressive retinal atrophy (PRA) genetic heterogeneity within and between domestic dog breeds. METHODS: DNA from 231 dogs with PRA, representing 36 breeds, was screened for 17 mutations previously associated with PRA in at least one breed of dog. Screening methods included amplified fragment size discrimination using gel electrophoresis or detection of fluorescence, (TaqMan(®) ; Life Technologies, Carlsbad, CA, USA) allelic discrimination, and Sanger sequencing. RESULTS: Of the 231 dogs screened, 129 were homozygous for a PRA-associated mutation, 29 dogs were carriers, and 73 were homozygous for the wild-type allele at all loci tested. In two of the 129 dogs, homozygous mutations were identified that had not previously been observed in the respective breeds: one Chinese Crested dog was homozygous for the RCD3-associated mutation usually found in the Cardigan Welsh Corgi, and one Standard Poodle was homozygous for the RCD4-associated mutation previously reported to segregate in Gordon and Irish Setters. In the majority of the breeds (15/21) in which a PRA-associated mutation is known to segregate, cases were identified that did not carry any of the known PRA-associated mutations. CONCLUSION: Progressive retinal atrophy in the dog displays significant genetic heterogeneity within as well as between breeds. There are also several instances where PRA-associated mutations segregate among breeds with no known close ancestry.


Subject(s)
Dog Diseases/genetics , Retinal Degeneration/veterinary , Animals , DNA/genetics , Dogs , Eye Proteins/genetics , Genetic Predisposition to Disease/genetics , Mutation , Retinal Degeneration/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...