Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Water Res ; 257: 121741, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744061

ABSTRACT

Biological treatment is commonly used in coking wastewater (CWW) treatment. Prokaryotic microbial communities in CWW treatment have been comprehensively studied. However, viruses, as the critical microorganisms affecting microbial processes and thus engineering parameters, still remain poorly understood in CWW treatment context. Employing viromics sequencing, the composition and function of the viral community in CWW treatment were discovered, revealing novel viral communities and key auxiliary metabolic functions. Caudovirales appeared to be the predominant viral order in the oxic-hydrolytic-oxic (OHO) CWW treatment combination, showing relative abundances of 62.47 %, 56.64 % and 92.20 % in bioreactors O1, H and O2, respectively. At the family level, Myoviridae, Podoviridae and Siphoviridae mainly prevailed in bioreactors O1 and H while Phycodnaviridae dominated in O2. A total of 56.23-92.24% of novel viral contigs defied family-level characterization in this distinct CWW habitat. The virus-host prediction results revealed most viruses infecting the specific functional taxa Pseudomonas, Acidovorax and Thauera in the entire OHO combination, demonstrating the viruses affecting bacterial physiology and pollutants removal from CWW. Viral auxiliary metabolic genes (AMGs) were screened, revealing their involvement in the metabolism of contaminants and toxicity tolerance. In the bioreactor O1, AMGs were enriched in detoxification and phosphorus ingestion, where glutathione S-transferase (GSTs) and beta-ketoadipyl CoA thiolase (fadA) participated in biodegradation of polycyclic aromatic hydrocarbons and phenols, respectively. In the bioreactors H and O2, the AMGs focused on cell division and epicyte formation of the hosts, where GDPmannose 4,6-dehydratase (gmd) related to lipopolysaccharides biosynthesis was considered to play an important role in the growth of nitrifiers. The diversities of viruses and AMGs decreased along the CWW treatment process, pointing to a reinforced virus-host adaptive strategy in stressful operation environments. In this study, the symbiotic virus-bacteria interaction patterns were proposed with a theoretical basis for promoting CWW biological treatment efficiency. The findings filled the gaps in the virus-bacteria interactions at the full-scale CWW treatment and provided great value for understanding the mechanism of biological toxicity and sludge activity in industrial wastewater treatment.


Subject(s)
Wastewater , Wastewater/virology , Bioreactors , Bacteria/metabolism , Waste Disposal, Fluid/methods , Coke , Viruses , Symbiosis
2.
J Hazard Mater ; 447: 130802, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36669414

ABSTRACT

In this study, physicochemical pre- and post-treatment of highly polluting coking wastewater (CWW) for the removal of refractory compounds and recovery of high-energy substances/components was investigated. An economic optimization model targeting the development of a cost-effective and sustainable treatment technology was proposed. At the post-treatment stage, powdered activated carbon (PAC) was used to separate the refractory and toxic pollutants from the bio-treated CWW, with the adsorption capacity ranging from 50 to 120 mg chemical oxygen demand (COD) g-1 PAC. Then, the spent PAC, together with a coagulant, was reused in the pre-treatment of highly concentrated raw CWW, which lifted the adsorption capacity to 800-1200 mg COD g-1 PAC. Results showed that the adsorbent's high selectivity towards macromolecular and complicated pollutants could remove 25-65 % of COD in both CWW flows. Analysis of pollutants' molecular weight distribution and GC-MS indicated a good affinity between PAC and high-energy pollutants (phenolic compounds and alkanes), which could transfer 144,555 kJ m-3 of energy from CWW to the adsorption-coagulation sludge. The economic optimization model suggested that the cost of the adsorbent was compensated by the net benefits of energy recovery and that profit was achieved when the PAC price was less than 5562 CNY t-1. The proposed two-stage PAC/coagulant approach offers a way to sustainable water quality and sludge management, plus energy recycling, in CWW treatment. It may also be applied to the treatment of other industrial wastewaters.

3.
Environ Sci Pollut Res Int ; 30(1): 2103-2117, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35930152

ABSTRACT

Taking into account difficulties in exhaustive simultaneous decarbonation and denitrogenation in biological treatment of coking wastewater (CWW), a novel full-scale CWW biological treatment sequentially combining anaerobic, aerobic, hydrolytic, and aerobic reactors (A/O1/H/O2) was designed performing excellent removal of carbon-containing pollutants in the bioreactors A and O1, while the nitrogen-containing compounds in the bioreactors H and O2. To provide an effective tool for the CWW treatment monitoring and control, the succession of microbial community in this unique toxic CWW habitat should be established and characterized in detail. The results of 16S rRNA genes revealed Acidobacteria dominating in the unique CWW habitat. The dominant groups in bioreactors A and O1 include Proteobacteria, Firmicutes, and Acidobacteria, while Proteobacteria, Acidobacteria, Nitrospirae, and Planctomycetes dominate in reactors H and O2. The genera of Rhodoplanes, Bacillus, and Leucobacter are rich in genes responsible for the xenobiotics biodegradation and metabolism pathway. The Mantel test and PCA results showed the microbial communities of A/O1/H/O2 sequence correlating strongly with SRT, and COD load and removal. The co-occurrence network analysis indicated decarbonation and denitrogenation driven by two network modules having the keystone taxa belonging to the Comamonadaceae and Hyphomicrobiaceae families. The results significantly expanded the knowledge on the diversity, structure, and function of the CWW active sludge differentiating the relationships between bacterial communities and environmental variables in CWW treatment.


Subject(s)
Coke , Wastewater , Humans , RNA, Ribosomal, 16S/metabolism , Sewage/microbiology , Bacteria/metabolism , Acidobacteria/genetics , Bioreactors , Waste Disposal, Fluid
4.
J Hazard Mater ; 437: 129267, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35716572

ABSTRACT

Systematically analyzing the problem of heavy metals in the municipal sludge, a meta-analysis of nine metals was undertaken to distinguish the sources and sinks of those with the impact of their accumulation on the environment. Municipal sludge was rich in N, P and K nutrients, was found to contain heavy metals comprising the descending order Zn > Mn > Cu > Cr > Pb > Ni > As > Cd > Hg. The forms, in which heavy metals accumulated in geographical regions, were characterized. The geographical distribution of heavy metals in the sludge showed a significant difference, with higher accumulation in Eastern and Southern regions, however, the risk evaluations showed the higher risk of heavy metals accumulation in Eastern and Western regions. Agricultural, industrial and traffic activities, and storm water pipeline sediments were identified as the main sources of heavy metals in the sludge. The correlation analysis elucidated the role of the total organic carbon in the accumulation of heavy metals in sludge. Municipal sludge is endowed with resource properties due to the detection of heavy metal contents thresholds in household products and its own resource-attributable enrichment behavior, which requires deduction of environmental risks.


Subject(s)
Metals, Heavy , Water Purification , China , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , Sewage/analysis
5.
Sci Total Environ ; 807(Pt 3): 151072, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34736752

ABSTRACT

The application of advanced biological treatment technology results in improved coking wastewater (CW) effluent quality at lower material and energy input practiced by wastewater treatment plants. In wastewater treatment, the diversity of biological processes combinations affects the variety of microorganisms and biochemical reactions resulting in effluent quality. Four full-scale CW processes, anaerobic-anoxic-oxic (A/A/O), anoxic-oxic-hydrolytic-oxic (A/O/H/O), anoxic-oxic-oxic (A/O/O), and oxic-hydrolytic-oxic (O/H/O) were compared for their consumption of chemicals and energy, emissions of greenhouse gases, and excess sludge production. A new performance indicator combining the above mentioned parameters was proposed to comprehensively evaluate processes in capacity to CW. The O/H/O process showed stable and reliable operation with minimum chemicals cost and the average energy consumption, whereas A/A/O at its good performance in TN removal required a large amount of alkaline chemicals to maintain stability. Besides, a substantial addition of chemicals in A/A/O results in larger average amounts of inorganic sludge. Also, the A/A/O process with a single aerobic unit appeared to be incapable of energy saving when dealing with CW rich in nitrogen and poor in phosphorus. The process with dual aerobic units can achieve more complete carbon and nitrogen removal, which is related to the sequence of biochemical reactions. Diverse sequence combinations can create variation in HRT and DO, whereby contaminants proceed through distinct channels of degradation. In the comparative analysis of CWPIs, it could be seen that O/H/O is the biological treatment process with the least equivalent energy consumption input at present thus exhibiting promising application in CW treatment. The A/O/O and A/O/H/O combinations are good attempts of development; however, more energy-efficient operation modes have to be further investigated.


Subject(s)
Biochemical Phenomena , Coke , Carbon , Phosphorus , Wastewater
6.
Sci Total Environ ; 742: 140400, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32629247

ABSTRACT

The design of biological treatment process for the coking wastewater (CW) is complicated since wastewater treatment demand is gradually increasing lacking the systematic strategy in efficiency evaluation and advisable selection. Therefore, this study develops a holistic approach by means of the analytic hierarchy process (AHP) that uses numerical representation to rank the preferences of each participating alternatives for evaluation of the advanced biological technologies in CW treatment. Based on survey results, six types reactor combinations were selected as the alternatives, which were further classified as two group according to COD load. The AHP methodology consists of weighting and ranking procedures considering technical, economic, environmental and administration factors defined as criteria layers. Eighteen indicators were chosen as sub-criteria layers. Inclusively beneficial and sustainable biological processes were assessed and ranked along the AHP implementation. The results placed technical indicators to the top position among the criteria layers in the weighting descending order 'technical indicators > economic indicators > environmental indicators > administrative indicators', whereas the weight of indicators in sub-criteria layers fitted in the range of 0.005 to 0.151. The inclusive priority calculation integrating all weight indices of criteria and sub-criteria layers resulted in the anaerobic-anoxic-oxic (A/A/O) combination rising in the hierarchy of the low load group, whereas the oxic-hydrolytic-oxic (O/H/O) process was prioritized in the high load group. The accuracy and objectivity of AHP application was also supported by sensitivity and variability analyses that examines a range for the weights' values and corresponding to alternative scenarios.


Subject(s)
Cocaine , Coke , Wastewater
7.
Chemosphere ; 253: 126767, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32464763

ABSTRACT

Herein, the potential of bimetallic MOFs in catalytic ozonation was investigated for the first time. Three novel ozonation catalysts, i.e. cobalt-based, nickel-based and cobalt/nickel-based metal-organic frameworks (Co-MOF, Ni-MOF and Co/Ni-MOF), were synthesized, characterized by XRD, SEM, N2 sorption-desorption isotherms, FTIR and XPS, and applied in catalytic ozonation for atrazine removal. It was found that the catalysts showed outstanding performance in the catalytic ozonation, especially Co/Ni-MOF which was attributed to multiple metal sites, higher coordination unsaturation, metal centers with larger electron density, and better efficiency in electron transfer than its single-metal counterparts. Under specific experimental conditions, 47.8%, 67.0%, 75.5%, and 93.9% of atrazine were removed after adsorption and degradation in the ozonation system without catalyst, and the catalytic ozonation systems with Co-MOF, Ni-MOF and Co/Ni-MOF, respectively. Higher removal rates could be achieved by growing initial pH, increasing oxidant dosage and reducing pollutant concentration, while an excess of Co/Ni-MOF was not favorable for the catalytic ozonation. Surface hydroxyl groups and acid sites were considered as the critical catalytic sites on Co/Ni-MOF. From the results of EPR tests, O2·-, 1O2 and ·OH were ascertained as the main reactive species in the degradation. It was suspected that O2·- and H2O2 played important roles in the formation of ·OH and the cycle of Co(II)/Co(III) and Ni(II)/Ni(III). Additionally, Co/Ni-MOF displayed good stability and reusability in cycling experiments, ascribed to the enhancement of the porosity and pore hydrophobicity. Finally, based on MS/MS analysis at different reaction times, major degradation pathways for atrazine were proposed.


Subject(s)
Atrazine/chemistry , Adsorption , Catalysis , Cobalt/chemistry , Electron Transport , Hydrogen Peroxide , Metal-Organic Frameworks/chemistry , Nickel/chemistry , Oxidants , Ozone/chemistry , Tandem Mass Spectrometry
8.
Int J Biol Macromol ; 149: 581-592, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31987941

ABSTRACT

A high-efficiency graphene oxide-terminated hyperbranched amino polymer-carboxymethyl cellulose ternary nanocomposite (GO-HBP-NH2-CMC) was fabricated for adsorbing heavy metals from aqueous solutions. The adsorbent was characterized by SEM, FT-IR, Raman, and XPS analyses showing its porous architecture, rough surface, abundant N- and O-containing functional groups providing enhanced binding ability towards Pb2+ and Cu2+. Experimental adsorption data fitted well to the pseudo-second-order kinetics and Langmuir isotherm models, indicating the adsorption of GO-HBP-NH2-CMC towards Pb2+ and Cu2+ being a chemical and monolayer process. The maximum adsorption capacities of GO-HBP-NH2-CMC for Pb2+ and Cu2+ at 25 °C comprised 152.86 and 137.48 mg/g, respectively. The laboratory-scale experimental study into the Pb2+ and Cu2+ adsorption in a fixed-bed column was undertaken. Effects of flow rate, bed depth and influent metals concentration on the adsorption performance were assessed. Experimental data successfully correlated with the Adams-Bohart, Thomas and Yoon-Nelson models with the R2 exceeding 0.79. Density functional theory calculation was adopted to study interactions between functional groups at GO-HBP-NH2-CMC and heavy metals showing OH, NH2 and COOH moieties in GO-HBP-NH2-CMC being more likely to bind Pb2+ rather than Cu2+, while the binding abilities of CONH towards Pb2+ and Cu2+ were similar.


Subject(s)
Graphite/chemistry , Metals, Heavy/isolation & purification , Nanocomposites/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption/drug effects , Cadmium/isolation & purification , Cadmium/toxicity , Carboxymethylcellulose Sodium/chemistry , Copper/isolation & purification , Copper/toxicity , Humans , Lead/isolation & purification , Lead/toxicity , Metals, Heavy/toxicity , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared , Water/chemistry , Water Pollutants, Chemical/toxicity , Water Purification/methods
9.
Chemosphere ; 228: 128-138, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31029958

ABSTRACT

Coking wastewater (CWW) contains high contents of phenols and other toxic and refractory compounds including polycyclic aromatic hydrocarbons (PAHs) with the most carcinogenic benzo[a]pyrene (BaP) among them. The mechanism of PAHs/BaP degradation in activated sludge of CWW treatment with phenol as co-substrate was studied. For characterizing the structure and functions of microbial community associated with BaP degradation with phenol as co-substrate, high-throughput MiSeq sequencing was used to examine the 16S rRNA genes of microbiology, revealing noticeable shifts in CWW activated sludge bacterial populations. Major genera involved in anaerobic degradation were Tissierella_Soehngenia, Diaphorobacter and Geobacter, whereas in aerobic degradation Rhodanobacter, Dyella and Thauera prevailed. BaP degradation with phenol as co-substrate induced bacterial diversification in CWW activated sludge in opposite trends when anaerobic and aerobic conditions were applied. In order to predict the microbial community functional profiling, a bioinformatics software package of phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) was run to find that some dominant genera enriched in the BaP pathway may own the ability to degrade PAHs/BaP. Further experiments should focus on testing the dominant genera in BaP degradation at different oxygen levels.


Subject(s)
Benzo(a)pyrene/metabolism , Microbiota , Phenol , Wastewater/chemistry , Bacteria/metabolism , Biodegradation, Environmental , Coke , Polycyclic Aromatic Hydrocarbons/metabolism , RNA, Ribosomal, 16S/analysis , Sewage/microbiology , Wastewater/microbiology
10.
Environ Sci Pollut Res Int ; 25(21): 21164-21175, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29770942

ABSTRACT

The need in simultaneous removal of heavy metals and organic compounds dictates the development of synthetic adsorbents with tailor-made properties. A nitrogen (N) and sulfur (S) co-doped graphene-based aerogel (GBA) modified with 2,5-dithiobisurea was synthesized hydrothermally for simultaneous adsorption of Cd2+ and organic dyes-safranin-O (SO), crystal violet (CV), and methylene blue (MB). 2,5-Dithiobisurea was used as nitrogen and sulfur sources to introduce N and S-containing functional group onto graphene oxide. The adsorption mechanism of GBA towards Cd2+ and organic dyes was studied by Dumwald-Wagner models and the results showed that surface and intraparticle diffusion was the key factor in controlling the rate of adsorption. The maximum adsorption capacities of GBA towards Cd2+, SO, CV, and MB comprised 1.755, 0.949, 0.538, and 0.389 mmol/g in monocomponent system, respectively. Adsorption synergism was observed with respect to Cd2+ in presence of the dyes. The performance of GBA with respect to Cd2+ removal from binary solutions, Cd2+-SO, Cd2+-CV, and Cd2+-MB, was enhanced by the presence of the dyes significantly, while the adsorption capacities towards the dyes were not affected by the presence of Cd2+.


Subject(s)
Cadmium/isolation & purification , Coloring Agents/isolation & purification , Graphite/chemistry , Waste Disposal, Fluid/methods , Adsorption , Cadmium/chemistry , Coloring Agents/chemistry , Diffusion , Gentian Violet/chemistry , Gentian Violet/isolation & purification , Methylene Blue/chemistry , Methylene Blue/isolation & purification , Microscopy, Electron, Scanning , Nitrogen/chemistry , Oxides/chemistry , Phenazines/chemistry , Phenazines/isolation & purification , Spectroscopy, Fourier Transform Infrared , Sulfur/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , X-Ray Diffraction
11.
Sci Total Environ ; 628-629: 467-473, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29453175

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are accumulated in the sludge collected from the coking wastewater treatment. Phenol with its efficient degradation observed in biological treatment promotes the solubility of PAHs in aqueous phase. The interaction mechanism of phenol and PAHs in aqueous and sludge phases was systematically studied in two full-scale engineering projects composed of anaerobic-oxic-oxic (A-O1-O2) and anaerobic-oxic-hydrolytic-oxic (A-O1-H-O2) sequences. The results showed that reasonable use of phenol facilitates solubilization of PAHs alleviating their emission problems. The ΔPAHs/Δphenol mass ratio in the sludge phase of A-O1-H-O2 system (146.3) exceeded that in A-O1-O2 one (63.80), exhibiting a good solubilization effect on PAHs with their more efficient degradation in the former. The full-scale observations were verified in laboratory solubilization experiments using phenanthrene (Phen), pyrene (Pyr) and benzo[a]pyrene (Bap) as the models of 3-, 4- and 5-ring PAHs, respectively. The binding energies of [phenol-PAHs] complexes were calculated using computational density functional theory showing consistency with the experimentally observed phenol-facilitated solubilization efficiencies in the row of Phen>Pyr>Bap. The results showed the fate and distribution of PAHs in coking wastewater treatment affected by the presence of phenol serving as a cost effective reagent for enhanced solubilization of PAHs from the coking wastewater sludge.

12.
J Environ Sci (China) ; 64: 306-316, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29478652

ABSTRACT

Coking wastewater (CW) contains toxic and macromolecular substances that inhibit biological treatment. The refractory compounds remaining in biologically treated coking wastewater (BTCW) provide chemical oxygen demand (COD) and color levels that make it unacceptable for reuse or disposal. Gas-phase pulsed corona discharge (PCD) utilizing mostly hydroxyl radicals and ozone as oxidants was applied to both raw coking wastewater (RCW) and BTCW wastewater as a supplemental treatment. The energy efficiency of COD, phenol, thiocyanate and cyanide degradation by PCD was the subject of the research. The cost-effective removal of intermediate oxidation products with addition of lime was also studied. The energy efficiency of oxidation was inversely proportional to the pulse repetition frequency: lower frequency allows more effective utilization of ozone at longer treatment times. Oxidative treatment of RCW showed the removal of phenol and thiocyanate at 800 pulses per second from 611 to 227mg/L and from 348 to 86mg/L, respectively, at 42kWh/m3 delivered energy, with substantial improvement in the BOD5/COD ratio (from 0.14 to 0.43). The COD and color of BTCW were removed by 30% and 93%, respectively, at 20kWh/m3, showing energy efficiency for the PCD treatment exceeding that of conventional ozonation by a factor of 3-4. Application of lime appeared to be an effective supplement to the PCD treatment of RCW, degrading COD by about 28% at an energy input of 28kWh/m3 and the lime dose of 3.0kg/m3. The improvement of RCW treatability is attributed to the degradation of toxic substances and fragmentation of macromolecular compounds.


Subject(s)
Coke/analysis , Industrial Waste/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Biological Oxygen Demand Analysis , Calcium Compounds/chemistry , Hydroxyl Radical/chemistry , Oxidation-Reduction , Oxides/chemistry , Ozone/chemistry , Phenol/chemistry
13.
Bioresour Technol ; 252: 20-27, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29306125

ABSTRACT

Various products are observed in biological oxidation and reduction of molecules containing elements of variable valence. The variability is caused by the diversity of microorganisms and their metabolic enzymes, which may develop into novel processes in wastewater treatment. The study aimed to develop a novel denitrification process forming nitrite and ammonium in wastewaters containing thiocyanate. High-efficiency nitrite and ammonium production was observed due to autotrophic partial denitrification and ammonification as a result of nitrate and thiocyanate removal. Nitrite, ammonium and sulfate were observed as the ultimate products. The increased NO3--N/SCN--N ratio in the treated wastewater resulted in the decreased removal efficiency of nitrate, and the increased nitrate-to-nitrite transformation ratio and the ratio of NO2--N to NH4+-N. Thiocyanate sulfur was oxidized to sulfate via intermediate elementary sulfur providing electron to nitrate or nitrite. The Thiobacillus genus dominated in the sludge providing ammonium and nitrite as substrate for the potentially anammox process.


Subject(s)
Ammonium Compounds , Denitrification , Wastewater , Autotrophic Processes , Bioreactors , Nitrates , Nitrites , Nitrogen , Oxidation-Reduction , Thiocyanates
14.
RSC Adv ; 8(16): 8950-8960, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-35539822

ABSTRACT

The simultaneous presence of heavy metals and organic acids in nature and wastewaters and their competition for adsorption sites determine the migration, transformation and fate of pollutants in the environment. A Cd2+-ion-imprinted polymer (Cd2+-IIP) with a thiol-functional group was hydrothermally synthesized by a surface imprinting technique combined with ultrasonic heating for selective adsorption of Cd2+ from wastewaters. The adsorbent was characterized by SEM, EDS, XPS, BET and FT-IR measurements. The experimental results concerning Cd2+ adsorption from single-, binary-, ternary- and quaternary-metal aqueous solutions containing Cu2+, Ni2+ and Zn2+ revealed high selectivity. In binary-metal solutions, relative selectivity coefficients for Cd2+ in respect to Cd2+/Cu2+, Cd2+/Ni2+, and Cd2+/Zn2+ were as high as 3.74, 5.73 and 4.15, respectively. In multi-metal solutions, competing heavy metal ions had little effect on the adsorption of Cd2+ attributed to the high selectivity of Cd2+-IIP towards Cd2+ determined by its coordination geometry. The effect of low-molecular weight organic acids on the Cd2+ adsorption was also studied and the results showed that the presence of tartaric, citric and oxalic acids as admixtures in Cd2+ aqueous solutions noticeably reduced the cation adsorption in a wide range of concentrations with the minor exception of low contents of citric and tartaric acids slightly improving adsorption.

15.
Sci Rep ; 7(1): 16152, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170457

ABSTRACT

The highly energetic electrons in non-thermal plasma generated by gas phase pulsed corona discharge (PCD) produce hydroxyl (OH) radicals via collision reactions with water molecules. Previous work has established that OH radicals are formed at the plasma-liquid interface, making it an important location for the oxidation of aqueous pollutants. Here, by contacting water as aerosol with PCD plasma, it is shown that OH radicals are produced on the gas side of the interface, and not in the liquid phase. It is also demonstrated that the gas-liquid interfacial boundary poses a barrier for the OH radicals, one they need to cross for reactive affinity with dissolved components, and that this process requires a gaseous atomic H scavenger. For gaseous oxidation, a scavenger, oxygen in common cases, is an advantage but not a requirement. OH radical efficiency in liquid phase reactions is strongly temperature dependent as radical termination reaction rates increase with temperature.

16.
Environ Technol ; 37(16): 2072-81, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26758812

ABSTRACT

The anti-epileptic drug carbamazepine (CBZ) receives growing attention due to slow biodegradation and inherent accumulation in the aquatic environment. The application of a gas-phase pulsed corona discharge (PCD) was investigated to remove CBZ from synthetic solutions and spiked wastewater effluent from a municipal wastewater treatment facility. The treated water was showered between high voltage (HV) wires and grounded plate electrodes, to which ultra-short HV pulses were applied. CBZ was readily oxidized and 1-(2-benzaldehyde)-4-hydroquinazoline-2-one (BQM) and 1-(2-benzaldehyde)-4-hydro-quinazoline-2,4-dione (BQD) were identified as the most abundant primary transformation products, which, contrary to CBZ ozonation data available in the literature, were further easily oxidized with PCD: BQM and BQD attributed to only a minor portion of the target compound oxidized. In concentrations commonly found in wastewater treatment plant effluents (around 5 µg L(-1)), up to 97% reduction in CBZ concentration was achieved at mere 0.3 kW h m(-3) energy consumption, and over 99.9% was removed at 1 kW h m(-3). The PCD application proved to be efficient in the removal of both the parent substance and its known transformation products, even with the competing reactions in the complex composition of wastewater.


Subject(s)
Carbamazepine/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Biodegradation, Environmental , Carbamazepine/analysis , Carbamazepine/isolation & purification , Hydroxyl Radical/chemistry , Ozone/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification
17.
Environ Technol ; 35(17-20): 2237-43, 2014.
Article in English | MEDLINE | ID: mdl-25145176

ABSTRACT

Photocatalytic water splitting for hydrogen and oxygen production requires sacrificial electron donors, for example, organic compounds. Titanium dioxide catalysts doped with platinum, cobalt, tungsten, copper and iron were experimentally tested for the production of hydrogen, oxygen and low molecular weight hydrocarbons from aqueous solutions of humic substances (HS). Platinum-doped catalyst showed the best results in hydrogen generation, also producing methane, ethene and ethane, whereas the best oxygen production was exhibited by P25, followed by copper--and cobalt-containing photocatalysts. Iron-containing photocatalyst produced carbon monoxide as a major product. HS undergoing anoxic photocatalytic degradation produce hydrogen with minor hydrocarbons, and/or oxygen. It appears that better hydrogen yield is achieved when direct HS splitting takes place, as opposed to HS acting as electron donors for water splitting.


Subject(s)
Humic Substances/analysis , Hydrogen/metabolism , Water Purification/methods , Biofuels , Humic Substances/radiation effects , Hydrocarbons/analysis , Hydrocarbons/metabolism , Hydrogen/analysis , Hydrogen-Ion Concentration , Oxygen/analysis , Oxygen/metabolism , Photochemical Processes , Titanium , Water Purification/instrumentation
18.
Environ Technol ; 35(1-4): 171-6, 2014.
Article in English | MEDLINE | ID: mdl-24600854

ABSTRACT

Lignin is the mass waste product of pulp and paper industry mostly incinerated for energy recovery. Lignin is, however, a substantial source of raw material for derivatives currently produced in costly wet oxidation processes. The pulsed corona discharge (PCD) for the first time was applied to lignin oxidation aiming a cost-effective environmentally friendly lignin removal and transformation to aldehydes. The experimental research into treatment of coniferous kraft lignin aqueous solutions was undertaken to establish the dependence of lignin oxidation and aldehyde formation on the discharge parameters, initial concentration of lignin and gas phase composition. The rate and the energy efficiency of lignin oxidation increased with increasing oxygen concentration reaching up to 82 g kW-1 h-1 in 89% vol. oxygen. Oxidation energy efficiency in PCD treatment exceeds the one for conventional ozonation by the factor of two under the experimental conditions. Oxidation at low oxygen concentrations showed a tendency of the increasing aldehydes and glyoxylic acid formation yield.


Subject(s)
Aldehydes/chemical synthesis , Aldehydes/radiation effects , Electromagnetic Fields , Lignin/chemistry , Lignin/radiation effects , Oxygen/chemistry , Water/chemistry , Dose-Response Relationship, Radiation , Oxidation-Reduction/radiation effects , Radiation Dosage
19.
Environ Technol ; 34(5-8): 923-30, 2013.
Article in English | MEDLINE | ID: mdl-23837343

ABSTRACT

Oxidation of aromatic compounds of phenolic (paracetamol, beta-oestradiol and salicylic acid) and carboxylic (indomethacin and ibuprofen) structure used in pharmaceutics was studied. Aqueous solutions were treated with pulsed corona discharge (PCD) as a means for advanced oxidation. Pulse repetition frequency, delivered energy dose and oxidation media were the main parameters studied for their influence on the process energy efficiency. The PCD treatment appeared to be effective in oxidation of the target compounds: complete degradation of pollutant together with partial mineralization was achieved at moderate energy consumption; oxidation proceeds faster in alkaline media. Low-molecular carboxylic acids were identified as ultimate oxidation by-products formed in the reaction.


Subject(s)
Electrochemistry/instrumentation , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/radiation effects , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/instrumentation , Electromagnetic Fields , Equipment Design , Equipment Failure Analysis , Oxidation-Reduction/radiation effects , Ozone/chemistry , Water Pollutants, Chemical/radiation effects
20.
Photochem Photobiol Sci ; 8(5): 600-3, 2009 May.
Article in English | MEDLINE | ID: mdl-19424531

ABSTRACT

Photocatalytic oxidation (PCO) of acrylonitrile (AN) on titanium dioxide in the gaseous phase was studied. AN readily undergoes photocatalytic degradation in a gas-solid system by using TiO(2) Degussa P25. The AN PCO volatile products, visible in the infrared spectra, included nitrogen dioxide, nitrous oxide, carbon dioxide, water, hydrogen cyanide and carbon monoxide. Longer contact time resulted in deeper oxidation of AN with decreasing hydrogen cyanide and increasing nitrogen dioxide content. The effect of temperature increasing from 60 to 130 degrees C was observed to be slightly negative in terms of AN degradation rate. However, the effect of increased temperature was noticeable in terms of the character and yields of the PCO products: HCN peaks diminished with growing peaks of NO(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...