Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Neurol ; 501(4): 568-81, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17278132

ABSTRACT

A substantial body of research has led to the recognition that the vestibular system participates in blood pressure modulation during active movements and changes in posture, and that this modulation is effected at least partly by the caudal vestibular nuclei. The I-4 isomer of imidazoleacetic acid-ribotide (IAA-RP) is a putative neurotransmitter/modulator that is thought to be an endogenous regulator of general sympathetic drive, particularly systemic blood pressure. The present study employed immunofluorescence and light and electron microscopic immunocytochemistry to visualize IAA-RP in the vestibular nuclei of adult male rats. The results demonstrate IAA-RP immunolabeling of subpopulations of vestibular neurons in the descending nucleus and the caudal half of the medial nucleus, with scattered immunostained vestibular neurons also present more rostrally. On the basis of double immunofluorescence staining for IAA-RP and calbindin, many of these ribotide-immunoreactive neurons appear to be innervated by cerebellar Purkinje cell afferents. Ultrastructural observations in the caudal vestibular nuclei confirm the IAA-RP immunolocalization in cell bodies and dendritic processes, and in some myelinated axons and presynaptic boutons. The regional distribution of IAA-RP immunoreactivity corresponds to the location of vestibular neurons involved in autonomic functions. The presence of IAA-RP in those neurons suggests that they participate specifically in vestibulo-autonomic regulation of blood pressure. The localization of immunostain in processes and terminals suggests that vestibulo-autonomic activity is subject to local feedback control. Overall, the observations offer a chemoanatomic basis for understanding the vestibular side effects commonly experienced by patients treated with clonidine and other imidazoline-related drugs.


Subject(s)
Neurons/metabolism , Ribosemonophosphates/physiology , Vestibular Nuclei/cytology , Animals , Calbindins , Citrulline/metabolism , Imidazoles , Immunohistochemistry/methods , Male , Microscopy, Immunoelectron/methods , Neurons/ultrastructure , Rats , Rats, Sprague-Dawley , S100 Calcium Binding Protein G/metabolism
2.
J Chem Neuroanat ; 33(1): 53-64, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17210242

ABSTRACT

Imidazoleacetic acid-ribotide (IAA-RP) is a putative neurotransmitter/modulator recently discovered in mammalian brain. The present study examines the distribution of IAA-RP in the rat CNS using a highly specific antiserum raised in rabbit against IAA-RP with immunostaining of aldehyde-fixed rat CNS. IAA-RP-immunoreactive neurons were present throughout the neuraxis; neuroglia were not labeled. In each region, only a subset of the neuronal pool was immunostained. In the forebrain, ribotide-immunolabeled neurons were common in neocortex, in hippocampal formation, and in subcortical structures including basal ganglia, thalamus and hypothalamus. Labeling was prominent in limbic areas including olfactory bulb, basal forebrain, pyriform cortex and amygdala. In the mid- and hindbrain, immunolabeled neurons were concentrated in specific nuclei and, in some areas, in specific subregions of those nuclei. Structures of the motor system, including cranial nerve motor nuclei, precerebellar nuclei, the substantia nigra, and the red nucleus were clearly labeled. Staining was intense in cells and/or puncta in the rostral and caudal ventrolateral medullary reticular formation, nucleus tractus solitarius and the caudal vestibular nuclear complex. Within neurons, the ribotide was found predominantly in somata and dendrites; some myelinated axons and occasional synaptic terminals were also immunostained. These data indicate that IAA-RP contributes to the neurochemical phenotype of many neuronal populations and further supports our suggestion that, in autonomic structures, IAA-RP may serve as a chemical mediator in complex circuits involved in blood pressure regulation and, more generally, sympathetic drive.


Subject(s)
Brain Chemistry/physiology , Imidazoles/metabolism , Receptors, Adrenergic/metabolism , Receptors, Drug/metabolism , Ribosemonophosphates/metabolism , Animals , Brain Stem/metabolism , Cerebellum/metabolism , Enzyme-Linked Immunosorbent Assay , Hippocampus/metabolism , Imidazoles/immunology , Imidazoline Receptors , Immunohistochemistry , Prosencephalon/metabolism , Rabbits , Rats , Rats, Sprague-Dawley , Ribosemonophosphates/immunology , Trigeminal Nuclei/metabolism , Vestibular Nuclei/metabolism
3.
Proc Natl Acad Sci U S A ; 101(37): 13677-82, 2004 Sep 14.
Article in English | MEDLINE | ID: mdl-15365189

ABSTRACT

We identified the previously unknown structures of ribosylated imidazoleacetic acids in rat, bovine, and human tissues to be imidazole-4-acetic acid-ribotide (IAA-RP) and its metabolite, imidazole-4-acetic acid-riboside. We also found that IAA-RP has physicochemical properties similar to those of an unidentified substance(s) extracted from mammalian tissues that interacts with imidazol(in)e receptors (I-Rs). ["Imidazoline," by consensus (International Union of Pharmacology), includes imidazole, imidazoline, and related compounds. We demonstrate that the imidazole IAA-RP acts at I-Rs, and because few (if any) imidazolines exist in vivo, we have adopted the term "imidazol(in)e-Rs."] The latter regulate multiple functions in the CNS and periphery. We now show that IAA-RP (i) is present in brain and tissue extracts that exhibit I-R activity; (ii) is present in neurons of brainstem areas, including the rostroventrolateral medulla, a region where drugs active at I-Rs are known to modulate blood pressure; (iii) is present within synaptosome-enriched fractions of brain where its release is Ca(2+)-dependent, consistent with transmitter function; (iv) produces I-R-linked effects in vitro (e.g., arachidonic acid and insulin release) that are blocked by relevant antagonists; and (v) produces hypertension when microinjected into the rostroventrolateral medulla. Our data also suggest that IAA-RP may interact with a novel imidazol(in)e-like receptor at this site. We propose that IAA-RP is a neuroregulator acting via I-Rs.


Subject(s)
Imidazoles/pharmacology , Receptors, Drug/agonists , Ribosemonophosphates/pharmacology , Adrenal Medulla/metabolism , Animals , Antibodies/immunology , Antibody Specificity , Arachidonic Acid/metabolism , Brain Stem/cytology , Calcium/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Hypertension/chemically induced , Imidazoles/chemistry , Imidazoles/immunology , Imidazoline Receptors , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/metabolism , Isomerism , Ligands , Molecular Structure , Neurons/metabolism , PC12 Cells , Rats , Receptors, Drug/metabolism , Ribosemonophosphates/chemistry , Ribosemonophosphates/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...