Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Med Ther ; 23(1): 394, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37924066

ABSTRACT

BACKGROUND: Decoctions of the root and stem of the medicinal plant Salacia reticulata is an indigenous remedy for diabetics and its complications in Sri Lanka. In diabetics, the formation of advanced glycation end products (AGEs) leads to many pathologies. Nevertheless, the anti-protein-glycation property of this plant is poorly documented. This study reports the anti-protein-glycation and radical scavenging potential of various plant parts of S. reticulata. METHODS: Hot water extracts (2g dried powder/50 ml) of root, stem, leaf, twigs, and fruits at various concentrations (15.6 to 500.0 µg/ml) were subjected to anti-glycation and glycation reversing assays in vitro. 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was used for free radical scavenging property. RESULTS: Various plant parts of S. reticulata showed anti-protein-glycation and free-radical scavenging activities. IC50 for the anti-glycation activity of root, stem, leaf, twigs, and fruit extracts were 11.92 ± 1.14, 35.18 ± 2.79, 113.3 ± 1.91, 149.59 ± 1.06, and 1120.37 ± 229.48 µg/ml respectively. IC50 of Rutin was 21.88 ± 2.82 µg/ml. EC50 of the root, stem, twigs, and leaf extracts for glycation reversing was 102.09 ± 6.23, 116.99 ± 5.82, 154.45 ± 5.79, and 278.78 ± 14.19 µg/ml respectively. The EC50 values for the radical scavenging activity of leaf, stem, and roots were 26.4±4.7, 9.0±1.2, and 9.1±1.3 respectively. Root had significantly (p<0.05) high activity for all the parameters tested. CONCLUSION: Salacia reticulata possess anti-glycation, glycation-reversing, and free radical scavenging activities. Other than root and stem, the leaves and twigs too may be a useful source for anti-diabetic bioactive molecules.


Subject(s)
Diabetes Mellitus , Plants, Medicinal , Salacia , Plants, Medicinal/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Salacia/chemistry , Sri Lanka , Hypoglycemic Agents , Maillard Reaction , Free Radicals
2.
BMC Complement Med Ther ; 22(1): 259, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36195907

ABSTRACT

BACKGROUND: The leaf of Ceylon cinnamon (true cinnamon) is traditionally claimed for a variety of health benefits. However, reported scientific information is scanty and needs urgent attention for value addition. METHODS: Ethanolic (95%) and Dichloromethane:Methanol (DM, 1:1 v/v) leaf extracts of Ceylon cinnamon were evaluated for a range of medically important bioactivities namely anti-inflammatory [nitric oxide scavenging activity (NOSA), superoxide scavenging activity (SCA), COX1 and COX2 inhibition], growth inhibition & cytotoxicity against MCF7, HePG2 and AN3CA carcinoma cell lines, glutathionase-S-transferase (GST) inhibition and antilipidemic (anti-HMG-CoA reductase, anti-lipase, anti-cholesterol esterase, and cholesterol micellization inhibition) properties in vitro (n = 3). Further, a range of bioactive compounds in both leaf extracts was also quantified (n = 3). RESULTS: Both leaf extracts had all the investigated bioactive compounds and possessed moderately potent bioactivities compared to the reference drugs used in the study. Ethanolic leaf extract (ELE) exhibited the highest activities (IC50: µg/mL) for NOSA (40.26 ± 0.52), SCA (696.24 ± 40.02), cholesterol esterase inhibition (110.19 ± 1.55), cholesterol micellization inhibition (616.69 ± 7.09), GST inhibition (403.78 ± 2.70) and growth inhibition (GI50: 144.84 ± 1.59-269.00 ± 0.51) & cytotoxicity (LC50: 355.44 ± 9.38-717.71 ± 23.69) against studied cancer cell lines. In contrast, COX1 & COX2 (IC50: 6.62 ± 0.85 and 44.91 ± 3.06 µg/mL) and HMG-CoA reductase & lipase inhibitory activities (36.72 ± 4.74 and 19.71 ± 0.97% inhibition at 200 and 600 µg/mL) were highest in DM extract. ELE also showed the highest quantities (0.81 ± 0.06-104.38 ± 1.79) of tested compounds (mg/g extract) where eugenol was the highest and gallic acid was the lowest among quantified. CONCLUSION: Both leaf extracts of Ceylon cinnamon had all the tested bioactive compounds and possess all the investigated bioactivities. This is the 1st study to report all the investigated bioactivities of the leaf of Ceylon Cinnamon.


Subject(s)
Cinnamomum zeylanicum , Oils, Volatile , Anti-Inflammatory Agents/pharmacology , Coenzyme A , Cyclooxygenase 2 , Esterases , Eugenol , Gallic Acid , Methanol , Methylene Chloride , Nitric Oxide , Oxidoreductases , Plant Extracts/metabolism , Plant Extracts/pharmacology , Superoxides , Transferases
3.
Article in English | MEDLINE | ID: mdl-33005205

ABSTRACT

OBJECTIVE: To investigate the immunomodulatory activity of a traditional Sri Lankan concoction of Coriandrum sativum L. and Coscinium fenestratum (Gaertn.) Colebr., which is a Sri Lankan traditional medicine used to relieve inflammation and cold. METHODS: In vivo anti-inflammatory activity was tested using carrageenan-induced rat paw-edema model. Mechanism of anti-inflammatory activity was assessed by investigating the production of nitric oxide (NO), expression of iNOS enzyme, and reactive oxygen species (ROS) by rat peritoneal cells. The membrane stabilizing activity was also tested. The antibody response was determined by assessing the specific haemagglutination antibodies raised against sheep red blood cells. RESULTS: The three doses of freeze-dried concoction used ((human equivalent dose (HED)-183 mg/kg) 2 × HED and 1/2HED; n = 6 rats/group) showed significant inhibition of paw edema compared to water control at 3rd-5th hours (p < 0.05). Both HED and 1/2HED exhibited marked anti-inflammatory activity (72-83% inhibition at 4th-5th hours; p < 0.05). The HED of the concoction showed significant inhibition of NO (77.5 ± 0.73%, p < 0.001) and ROS production (26.9 ± 2.55%; p < 0.01) by rat peritoneal cells. Inhibition of NO production in the concoction treated rat peritoneal cells was confirmed by the lack of iNOS expression. The concoction also exhibited significant membrane stabilizing activity (IC50 = 0.0006 µg/ml; p = 0.001). HED resulted in a significantly high induction of specific antibody production against SRBC antigens as detected by SRBC haemagglutination assay (mean day 14 titers 253.3 compared to control: 66.7) (p < 0.01). CONCLUSIONS: The traditional Sri Lankan concoction of C. sativum and C. fenestratum demonstrated potent in vivo anti-inflammatory activity, significant reduction of ROS, and NO production by rat peritoneal cells and the lack of iNOS expression confirmed the low NO production. The increased membrane stability also supports the anti-inflammatory activity of the concoction. Further, this concoction induced a significantly high antibody response reflecting its immunostimulatory activity. Together these results scientifically validate the therapeutic use of the concoction of C. sativum and C. fenestratum in Sri Lankan traditional medicinal system for immunomodulatory effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...