Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 258(Pt 2): 129279, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38262834

ABSTRACT

This research aimed to evaluate the encapsulation of the probiotic strain, Streptococcus thermophilus, in hydrogels employing sodium alginate (SA) with κ-carrageenan (κC) in gelation baths with varying salt concentrations (CaCl2 and KCl) followed by freeze-drying. The experimentation was conducted at varying levels of κC (0-0.5 % w/v) and SA (2-4 %). Freeze-dried hydrogels were evaluated based on encapsulation efficiency and loss of viability and further characterised. The study could successfully establish an encapsulation efficiency of 87.814 % and a viability loss of 1.201 log CFU·g-1 for the optimised samples. The SEM micrographs of the optimised Ca-alginate/κC hydrogels exhibited a much denser network with fewer pores. The influence of SA/κC in the beads was confirmed by FTIR and DSC, where distinct peak shifts were observed, which indicated the presence of κC and SA polymers. The probiotic survival under simulated gastrointestinal tract (GIT) conditions, performed in accordance with the INFOGEST protocol, indicated that the optimised Ca-alginate/κC beads had a lower rate of release in the gastric phase and a much higher rate of survival and release in the intestinal phase than the control sample. The swelling behaviour of beads varied due to varying pH in both gastric and intestinal phases, and the κC in the optimised beads affected the swelling ratio significantly.


Subject(s)
Alginates , Probiotics , Carrageenan , Hydrogels , Digestion
2.
Compr Rev Food Sci Food Saf ; 21(2): 1054-1085, 2022 03.
Article in English | MEDLINE | ID: mdl-35068040

ABSTRACT

The need for sustainable food production and the demand for fresh and minimally processed foods have prompted remarkable research in novel food processing technologies that ensure safe and shelf-stable food for a large population. Long-established techniques such as heating, drying, and freezing have been associated with nutrient loss and high energy consumption. This trend has drawn attention to the practice of employing ozone in several food applications owing to its significant disinfectant and antimicrobial efficiency. The aqueous form of ozone has been found to show greater efficacy than its gaseous form, with faster decomposition rates leaving no harmful residues. The current study presents an overview of the latest scientific literature on the properties, chemistry, and generation of aqueous ozone, emphasizing the factors affecting process efficiency. The review scrupulously focuses on food decontamination, starch modification, pesticide degradation, and seed germination effects of aqueous ozone, highlighting the optimum processing parameters and salient findings of some major studies. A brief insight into the limitations and future trends has also been presented. Aqueous ozone has been acclaimed to have the potential to cause significant changes in the food matrix that could result in constructive modifications with outcomes entirely dependent on the processing conditions. Indirect and direct reactions involving hydroxyl radical and molecular oxygen atoms, respectively, form the basis of the ozone reaction in aqueous media, providing a distinctive kind of advanced oxidation process that offers certain crucial benefits. With a shorter half-life in water as compared to air, the rapid decomposition of aqueous ozone to oxygen, leaving no harmful residues, adds to its advantages.


Subject(s)
Anti-Infective Agents , Ozone , Anti-Infective Agents/pharmacology , Food Microbiology , Microbial Viability , Ozone/chemistry , Ozone/pharmacology , Water
3.
Food Res Int ; 151: 110879, 2022 01.
Article in English | MEDLINE | ID: mdl-34980409

ABSTRACT

Food flavors are volatile compounds that impact the human sensory perception profoundly and find extensive applications in various food products. Because of their volatility and high sensitivity to pH, temperature, oxidation, and external conditions, they require adequate protection to last for a longer duration. Encapsulation plays a critical role in preserving food flavors by enhancing their thermal and oxidative stability, overcoming volatility limitations, and regulating their rapid release with improved bioavailability in food products. The current review focuses on the recent developments in food flavor encapsulation techniques, such as electrospinning/spraying, cyclodextrin inclusion complexes, coacervation, and yeast cell micro-carriers. The review also comprehensively discusses the role of encapsulants in achieving controlled flavor release, the mechanisms involved, and the mathematical modelling for flavor release. Specific well-established nanoencapsulation techniques render better encapsulation efficiency and controlled release of flavor compounds. The review examined specific emerging methods for flavor encapsulation, such as yeast cell encapsulation, which require further exploration and development. This article provides readers with up-to-date information on different encapsulation processes and coating methods used for flavor encapsulation.


Subject(s)
Cyclodextrins , Flavoring Agents , Biological Availability , Humans , Taste
4.
Food Chem ; 348: 129088, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33515948

ABSTRACT

Roasting is a food processingtechnique that employs the principle of heating to cook the product evenly and enhance the digestibility, palatability and sensory aspects of foods with desirable structural modifications of the food matrix. With the burgeoning demand for fortified roasted products along with the concern for food hygiene and the effects of harmful compounds, novel roasting techniques, and equipment to overcome the limitations of conventional operations are indispensable. Roasting techniques employing microwave, infrared hot-air, superheated steam, Revtech roaster, and Forced Convection Continuous Tumble (FCCT) roasting have been figuratively emerging to prominence for effectively roasting different foods without compromising the nutritional quality. The present review critically appraises various conventional and emerging roasting techniques, their advantages and limitations, and their effect on different food matrix components, functional properties, structural attributes, and sensory aspects for a wide range of products. It was seen that thermal processing at high temperatures for increased durations affected both the physicochemical and structural properties of food. Nevertheless, novel techniques caused minimum destructive impacts as compared to the traditional processes. However, further studies applying novel roasting techniques with a wide range of operating conditions on different types of products are crucial to establish the potential of these techniques in obtaining safe, quality foods.


Subject(s)
Cooking/methods , Hot Temperature , Food Quality , Microwaves , Nutritive Value , Steam
SELECTION OF CITATIONS
SEARCH DETAIL
...