Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(6): 112630, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37300833

ABSTRACT

Although therapeutic B cell depletion dramatically resolves inflammation in many diseases in which antibodies appear not to play a central role, distinct extrafollicular pathogenic B cell subsets that accumulate in disease lesions have hitherto not been identified. The circulating immunoglobulin D (IgD)-CD27-CXCR5-CD11c+ DN2 B cell subset has been previously studied in some autoimmune diseases. A distinct IgD-CD27-CXCR5-CD11c- DN3 B cell subset accumulates in the blood both in IgG4-related disease, an autoimmune disease in which inflammation and fibrosis can be reversed by B cell depletion, and in severe COVID-19. These DN3 B cells prominently accumulate in the end organs of IgG4-related disease and in lung lesions in COVID-19, and double-negative B cells prominently cluster with CD4+ T cells in these lesions. Extrafollicular DN3 B cells may participate in tissue inflammation and fibrosis in autoimmune fibrotic diseases, as well as in COVID-19.


Subject(s)
B-Lymphocyte Subsets , COVID-19 , Immunoglobulin G4-Related Disease , Humans , Fibrosis , Immunoglobulin D , Inflammation , Receptors, CXCR5 , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/pathology
2.
Sci Rep ; 12(1): 15427, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36104369

ABSTRACT

Sjögren's syndrome is a chronic autoimmune disorder whose pathogenesis is poorly understood and that lacks effective therapies. Detailed quantitative and spatial analyses of tissues affected by Sjögren's syndrome were undertaken, including the quantitation of the frequency of selected cell-cell interactions in the disease milieu. Quantitative analyses of CD4+ T cell subsets and of CD8+ T cells in the labial salivary glands from untreated patients with primary Sjögren's syndrome revealed that activated CD8+ cytotoxic T cells (CD8+CTLs) were the most prominent T cells in these infiltrates. An accumulation of apoptotic glandular epithelial cells, mainly ductal and acinar cells, was observed, consistent with the impaired salivary secretion often observed in patients with this disease. FasL expressing activated CD8+ T cells were seen to accumulate around Fas expressing apoptotic epithelial cells. Quantitative analyses of apoptotic cell types and of conjugates between cytotoxic T cells and epithelial cells undergoing apoptosis suggest that Sjögren's syndrome is primarily driven by CD8+CTL mediated execution of epithelial cells mainly represented by ductal and acinar cells.


Subject(s)
Sjogren's Syndrome , CD8-Positive T-Lymphocytes , Humans , Salivary Glands/metabolism , Salivary Glands, Minor/pathology , Sjogren's Syndrome/pathology , T-Lymphocytes, Cytotoxic/pathology
3.
Clin Immunol ; 237: 108991, 2022 04.
Article in English | MEDLINE | ID: mdl-35364330

ABSTRACT

Many studies have been performed in severe COVID-19 on immune cells in the circulation and on cells obtained by bronchoalveolar lavage. Most studies have tended to provide relative information rather than a quantitative view, and it is a combination of approaches by various groups that is helping the field build a picture of the mechanisms that drive severe lung disease. Approaches employed to date have not revealed information on lung parenchymal T cell subsets in severe COVID-19. Therefore, we sought to examine early and late T cell subset alterations in the lungs and draining lymph nodes in severe COVID-19 using a rapid autopsy protocol and quantitative imaging approaches. Here, we have established that cytotoxic CD4+ T cells (CD4 + CTLs) increase in the lungs, draining lymph nodes and blood as COVID-19 progresses. CD4 + CTLs are prominently expanded in the lung parenchyma in severe COVID-19. In contrast CD8+ T cells are not prominent, exhibit increased PD-1 expression, and no obvious increase is seen in the number of Granzyme B+ CD8+ T cells in the lung parenchyma in severe COVID-19. Based on quantitative evidence for re-activation in the lung milieu, CD4 + CTLs may be as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes , COVID-19 , CD8-Positive T-Lymphocytes , Humans , Lung , T-Lymphocyte Subsets , T-Lymphocytes, Cytotoxic
4.
medRxiv ; 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33791730

ABSTRACT

The contributions of T cells infiltrating the lungs to SARS-CoV-2 clearance and disease progression are poorly understood. Although studies of CD8+ T cells in bronchoalveolar lavage and blood have suggested that these cells are exhausted in severe COVID-19, CD4+ T cells have not been systematically interrogated within the lung parenchyma. We establish here that cytotoxic CD4+ T cells (CD4+CTLs) are prominently expanded in the COVID-19 lung infiltrate. CD4+CTL numbers in the lung increase with disease severity and progression is accompanied by widespread HLA-DR expression on lung epithelial and endothelial cells, increased apoptosis of epithelial cells and tissue remodeling. Based on quantitative evidence for re-activation in the lung milieu, CD4+ CTLs are as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19. IN BRIEF: In severe COVID-19 cytotoxic CD4+ T cells accumulate in draining lymph nodes and in the lungs during the resolving phase of the disease. Re-activated cytotoxic CD4+ T cells and cytotoxic CD8+ T cells are present in roughly equivalent numbers in the lungs at this stage and these cells likely collaborate to eliminate virally infected cells and potentially induce fibrosis. A large fraction of epithelial and endothelial cells in the lung express HLA class II in COVID-19 and there is temporal convergence between CD4+CTL accumulation and apoptosis in the lung. HIGHLIGHTS: In severe COVID-19, activated CD4+ CTLs accumulate in the lungs late in diseaseThese cells likely participate in SARS-CoV-2 clearance, collaborating with CD8+ T cells many of which exhibit an exhausted phenotypeT cells likely contribute to the late exacerbation of inflammationCD4+CTLs have been linked to fibrosis in many disorders and could also be responsible for the eventual induction of fibrosis in a subset of COVID-19 patients. SUMMARY: The contributions of T cells infiltrating the lungs to SARS-CoV-2 clearance and disease progression are poorly understood. Although studies of CD8+ T cells in bronchoalveolar lavage and blood have suggested that these cells are exhausted in severe COVID-19, CD4+ T cells have not been systematically interrogated within the lung parenchyma. We establish here that cytotoxic CD4+ T cells (CD4+CTLs) are prominently expanded in the COVID-19 lung infiltrate. CD4+CTL numbers in the lung increase with disease severity and progression is accompanied by widespread HLA-DR expression on lung epithelial and endothelial cells, increased apoptosis of epithelial cells and tissue remodeling. Based on quantitative evidence for re-activation in the lung milieu, CD4+ CTLs are as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...