Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Metab ; 6(2): 304-322, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38337096

ABSTRACT

Skeletal muscle is dynamically controlled by the balance of protein synthesis and degradation. Here we discover an unexpected function for the transcriptional repressor B cell lymphoma 6 (BCL6) in muscle proteostasis and strength in mice. Skeletal muscle-specific Bcl6 ablation in utero or in adult mice results in over 30% decreased muscle mass and force production due to reduced protein synthesis and increased autophagy, while it promotes a shift to a slower myosin heavy chain fibre profile. Ribosome profiling reveals reduced overall translation efficiency in Bcl6-ablated muscles. Mechanistically, tandem chromatin immunoprecipitation, transcriptomic and translational analyses identify direct BCL6 repression of eukaryotic translation initiation factor 4E-binding protein 1 (Eif4ebp1) and activation of insulin-like growth factor 1 (Igf1) and androgen receptor (Ar). Together, these results uncover a bifunctional role for BCL6 in the transcriptional and translational control of muscle proteostasis.


Subject(s)
Proteostasis , Proto-Oncogene Proteins c-bcl-6 , Transcription Factors , Animals , Mice , Chromatin Immunoprecipitation , Muscle, Skeletal/metabolism , Transcription Factors/metabolism , Proto-Oncogene Proteins c-bcl-6/genetics
2.
Nat Cancer ; 3(7): 852-865, 2022 07.
Article in English | MEDLINE | ID: mdl-35681100

ABSTRACT

Nutrient-deprived conditions in the tumor microenvironment (TME) restrain cancer cell viability due to increased free radicals and reduced energy production. In pancreatic cancer cells a cytosolic metabolic enzyme, wild-type isocitrate dehydrogenase 1 (wtIDH1), enables adaptation to these conditions. Under nutrient starvation, wtIDH1 oxidizes isocitrate to generate α-ketoglutarate (αKG) for anaplerosis and NADPH to support antioxidant defense. In this study, we show that allosteric inhibitors of mutant IDH1 (mIDH1) are potent wtIDH1 inhibitors under conditions present in the TME. We demonstrate that low magnesium levels facilitate allosteric inhibition of wtIDH1, which is lethal to cancer cells when nutrients are limited. Furthermore, the Food & Drug Administration (FDA)-approved mIDH1 inhibitor ivosidenib (AG-120) dramatically inhibited tumor growth in preclinical models of pancreatic cancer, highlighting this approach as a potential therapeutic strategy against wild-type IDH1 cancers.


Subject(s)
Isocitrate Dehydrogenase , Pancreatic Neoplasms , Allosteric Regulation , Enzyme Inhibitors/pharmacology , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Nutrients , Pancreatic Neoplasms/drug therapy , Tumor Microenvironment , Pancreatic Neoplasms
3.
Front Physiol ; 13: 772313, 2022.
Article in English | MEDLINE | ID: mdl-35464086

ABSTRACT

Mitochondrial malfunction is a hallmark of many diseases, including neurodegenerative disorders, cardiovascular and lung diseases, and cancers. We previously found that alveolar progenitor cells, which are more resistant to cigarette smoke-induced injury than the other cells of the lung parenchyma, upregulate the mtDNA-encoded small non-coding RNA mito-ncR-805 after exposure to smoke. The mito-ncR-805 acts as a retrograde signal between the mitochondria and the nucleus. Here, we identified a region of mito-ncR-805 that is conserved in the mammalian mitochondrial genomes and generated shorter versions of mouse and human transcripts (mmu-CR805 and hsa-LDL1, respectively), which differ in a few nucleotides and which we refer to as the "functional bit". Overexpression of mouse and human functional bits in either the mouse or the human lung epithelial cells led to an increase in the activity of the Krebs cycle and oxidative phosphorylation, stabilized the mitochondrial potential, conferred faster cell division, and lowered the levels of proapoptotic pseudokinase, TRIB3. Both oligos, mmu-CR805 and hsa-LDL1 conferred cross-species beneficial effects. Our data indicate a high degree of evolutionary conservation of retrograde signaling via a functional bit of the D-loop transcript, mito-ncR-805, in the mammals. This emphasizes the importance of the pathway and suggests a potential to develop this functional bit into a therapeutic agent that enhances mitochondrial bioenergetics.

4.
Lancet Neurol ; 21(1): 31-41, 2022 01.
Article in English | MEDLINE | ID: mdl-34942135

ABSTRACT

BACKGROUND: Down syndrome is a chromosomal disorder with considerable neurodevelopmental impact and neurodegenerative morbidity. In a pilot trial in young adults with Down syndrome, memantine (a drug approved for Alzheimer's disease) showed a significant effect on a secondary measure of episodic memory. We aimed to test whether memantine would improve episodic memory in adolescents and young adults with Down syndrome. METHODS: We did a randomised, double-blind, placebo-controlled phase 2 trial with a parallel design, stratified by age and sex. Participants (aged 15-32 years) with either trisomy 21 or complete unbalanced translocation of chromosome 21 and in general good health were recruited from the community at one site in Brazil and another in the USA. Participants were randomly assigned (1:1) to receive either memantine (20 mg/day orally) or placebo for 16 weeks. Computer-generated randomisation tables for both sites (allocating a placebo or drug label to each member of a unique pair of participants) were centrally produced by an independent statistician and were shared only with investigational pharmacists at participating sites until unblinding of the study. Participants and investigators were masked to treatment assignments. Neuropsychological assessments were done at baseline (T1) and week 16 (T2). The primary outcome measure was change from baseline to week 16 in the California Verbal Learning Test-second edition short-form (CVLT-II-sf) total free recall score, assessed in the per-protocol population (ie, participants who completed 16 weeks of treatment and had neuropsychological assessments at T1 and T2). Linear mixed effect models were fit to data from the per-protocol population. Safety and tolerability were monitored and analysed in all participants who started treatment. Steady-state concentrations in plasma of memantine were measured at the end of the trial. This study is registered at ClinicalTrials.gov, number NCT02304302. FINDINGS: From May 13, 2015, to July 22, 2020, 185 participants with Down syndrome were assessed for eligibility and 160 (86%) were randomly assigned either memantine (n=81) or placebo (n=79). All participants received their allocated treatment. Linear mixed effect models were fit to data from 149 (81%) participants, 73 in the memantine group and 76 in the placebo group, after 11 people (eight in the memantine group and three in the placebo group) discontinued due to COVID-19 restrictions, illness of their caregiver, adverse events, or low compliance. The primary outcome measure did not differ between groups (CVLT-II-sf total free recall score, change from baseline 0·34 points [95% CI -0·98 to 1·67], p=0·61). Memantine was well tolerated, with infrequent mild-to-moderate adverse events, the most common being viral upper respiratory infection (nine [11%] participants in the memantine group and 12 [15%] in the placebo group) and transient dizziness (eight [10%] in the memantine group and six [8%] in the placebo group). No serious adverse events were observed. Amounts of memantine in plasma were substantially lower than those considered therapeutic for Alzheimer's disease. INTERPRETATION: Memantine was well tolerated, but cognition-enhancing effects were not recorded with a 20 mg/day dose in adolescents and young adults with Down syndrome. Exploratory analyses point to a need for future work. FUNDING: Alana Foundation. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Subject(s)
Down Syndrome/drug therapy , Memantine/therapeutic use , Adolescent , Cognition/drug effects , Double-Blind Method , Down Syndrome/psychology , Female , Humans , Male , Memantine/administration & dosage , Memantine/pharmacology , Treatment Outcome , Young Adult
5.
Neurotherapeutics ; 18(3): 2040-2060, 2021 07.
Article in English | MEDLINE | ID: mdl-34235635

ABSTRACT

Cholesterol and 24-hydroxycholesterol are the most abundant brain sterols and represent the substrate and product, respectively, of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. CYP46A1 controls cholesterol elimination and turnover in the brain, the two processes that determine the rate of brain sterol flux through the plasma membranes and thereby the properties of these membranes. Brain sterol flux is decreased in Cyp46a1-/- mice compared to wild-type mice and increased in 5XFAD mice (a model of Alzheimer's disease) when they are treated with a small dose of efavirenz, a CYP46A1 activator. Herein, we first assessed the brain proteome (synaptosomal fractions) and phospho-proteome (synaptosomal fractions and brain homogenates) of efavirenz-treated and control 5XFAD mice. Then, based on the pattern of protein abundance change, we conducted acetyl-CoA measurements (brain homogenates and mitochondria) and metabolic profiling (brain homogenates). The phospho-proteomics datasets were used for comparative analyses with the datasets obtained by us previously on mice with the same changes (efavirenz-treated and control 5XFAD mice from a different treatment paradigm) or with changes in the opposite direction (Cyp46a1-/- vs wild-type mice) in brain sterol flux. We found that CYP46A1 activity or the rate of brain sterol flux affects acetyl-CoA-related metabolic pathways as well as phosphorylation of cytoskeletal and other proteins. Knowledge of the key roles of acetyl-CoA and cytoskeletal phosphorylation in cell biology expands our understanding of the significance of CYP46A1-mediated cholesterol 24-hydroxylation in the brain and provides an additional explanation for why CYP46A1 activity modulations are beneficial in mouse models of different brain diseases.


Subject(s)
Acetyl Coenzyme A/metabolism , Brain/metabolism , Cholesterol 24-Hydroxylase/metabolism , Cytoskeletal Proteins/metabolism , Sterols/metabolism , Acetyl Coenzyme A/genetics , Animals , Cholesterol 24-Hydroxylase/genetics , Cytoskeletal Proteins/genetics , Male , Metabolomics/methods , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Phosphorylation/physiology
6.
Cell Mol Life Sci ; 78(3): 963-983, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32440710

ABSTRACT

Apolipoprotein D (APOD) is an atypical apolipoprotein with unknown significance for retinal structure and function. Conversely, apolipoprotein E (APOE) is a typical apolipoprotein with established roles in retinal cholesterol transport. Herein, we immunolocalized APOD to the photoreceptor inner segments and conducted ophthalmic characterizations of ApoD-/- and ApoD-/-ApoE-/- mice. ApoD-/- mice had normal levels of retinal sterols but changes in the chorioretinal blood vessels and impaired retinal function. The whole-body glucose disposal was impaired in this genotype but the retinal glucose metabolism was unchanged. ApoD-/-ApoE-/- mice had altered sterol profile in the retina but apparently normal chorioretinal vasculature and function. The whole-body glucose disposal and retinal glucose utilization were enhanced in this genotype. OB-Rb, both leptin and APOD receptor, was found to be expressed in the photoreceptor inner segments and was at increased abundance in the ApoD-/- and ApoD-/-ApoE-/- retinas. Retinal levels of Glut4 and Cd36, the glucose transporter and scavenger receptor, respectively, were increased as well, thus linking APOD to retinal glucose and fatty acid metabolism and suggesting the APOD-OB-Rb-GLUT4/CD36 axis. In vivo isotopic labeling, transmission electron microscopy, and retinal proteomics provided additional insights into the mechanism underlying the retinal phenotypes of ApoD-/- and ApoD-/-ApoE-/- mice. Collectively, our data suggest that the APOD roles in the retina are context specific and could determine retinal glucose fluxes into different pathways. APOD and APOE do not play redundant, complementary or opposing roles in the retina, rather their interplay is more complex and reflects retinal responses elicited by lack of these apolipoproteins.


Subject(s)
Apolipoproteins D/metabolism , Retina/metabolism , Animals , Apolipoproteins D/deficiency , Apolipoproteins D/genetics , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , CD36 Antigens/metabolism , Diet, High-Fat , Fatty Acids/metabolism , Female , Genotype , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Isotope Labeling , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteomics , Retina/pathology , Sterols/analysis , Sterols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...