Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Aquat Toxicol ; 246: 106148, 2022 May.
Article in English | MEDLINE | ID: mdl-35364510

ABSTRACT

Saxitoxin (STX) is a neurotoxic cyanotoxin that also generate reactive oxygen species, leading to a situation of oxidative stress and altered metabolism. The Amazonian fruit açaí Euterpe oleracea possesses a high concentration of antioxidant molecules, a fact that prompted us to evaluate its chemoprotection activity against STX toxicity (obtained from samples of Trichodesmium sp. collected in the environment) in the shrimp Litopenaeus vannamei. For 30 days, shrimps were maintained in 16 aquaria containing 10 shrimps (15% salinity, pH 8.0, 24 °C, 12C/12D photoperiod) and fed twice daily with a diet supplemented with lyophilized açaí pulp (10%), in addition to the control diet. After, shrimps (7.21 ± 0.04 g) were exposed to the toxin added to the feed for 96 h. Four treatments were defined: CTR (control diet), T (lyophilized powder of Trichodesmium sp. 0.8 µg/g), A (10% of açaí) and the combination T + A. HPLC analysis showed predominance of gonyautoxin-1 concentrations (GTX-1) and gonyautoxin-4 concentrations (GTX-4). The results of molecular docking simulations indicated that all variants of STX, including GTX-1, can be a substrate of isoform mu of the glutathione-S-transferase (GST) enzyme since these molecules obtained similar values of estimated Free Energy of Binding (FEB), as well as similar final positions on the binding site. GSH levels were reduced in muscle tissues of shrimp in the T, A, and T + A treatments. Increased GST activity was observed in shrimp hepatopancreas of the T treatment and the gills of the A and T + A treatments. A decrease of protein sulfhydryl groups (P-SH) was observed in gills of shrimps from T + A treatment. A reduction in malondialdehyde (MDA) levels was registered in the hepatopancreas of the T + A treatment in respect to the Control, T, and A treatments. The use of açaí supplements in L. vannamei feed was able to partially mitigate the toxic effects caused by Trichodesmium sp. extracts, and points to mu GST isoform as a key enzyme for saxitoxin detoxification in L. vannamei, an issue that deserves further investigation.


Subject(s)
Euterpe , Penaeidae , Water Pollutants, Chemical , Animals , Euterpe/chemistry , Molecular Docking Simulation , Saxitoxin/toxicity , Water Pollutants, Chemical/toxicity
2.
Polymers (Basel) ; 13(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34641147

ABSTRACT

In this study, chitosan nanoparticles (CNPs) were prepared by the ionic gelation technique with tripolyphosphate (TPP), and the effect of CNP composition and physicochemical characteristics were evaluated. After the synthesis optimization, CNPs were used as carriers for a fish protein hydrolysate (FPH) with bioactive properties (CNPH). The physicochemical characteristics, antioxidant capacity and antimicrobial, antihypertensive and emulsifier properties of unloaded and loaded CNPs in a food system model were studied. CNPH showed a uniform particle distribution, size ~200 nm, high stability (zeta potential around 30 mV), radical scavenging activity and increased antimicrobial activity against Staphylococcus aureus, Shigella sonnei and Aeromonas hydrophila. Additionally, CNPH showed an angiotensin I-converting enzyme (ACE)-inhibitory activity of 63.6% and, when added to a food emulsion model, this system containing CNPs, with or without FHP, exhibited improved food emulsion stability. Thus, CNPs were able to carry the FPH while maintaining their bioactive properties and can be an alternative to the delivery of bioactive peptides with potential as an emulsion stabilizer for food applications.

3.
Antioxidants (Basel) ; 10(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34679702

ABSTRACT

The aim of the present work was to fortify yogurt by adding a stripped weakfish (Cynoscion guatucupa) protein hydrolysate obtained with the enzyme Protamex and microencapsulated by spray drying, using maltodextrin (MD) as wall material. The effects on the physicochemical properties, syneresis, texture, viscoelasticity, antioxidant and ACE inhibitory activities of yogurt after 1 and 7 days of storage were evaluated. In addition, microbiological and sensory analyses were performed. Four yogurt formulations were prepared: control yogurt (without additives, YC), yogurt with MD (2.1%, YMD), with the free hydrolysate (1.4%, YH) and the microencapsulated hydrolysate (3.5%, YHEn). Yogurts to which free and microencapsulated hydrolysates were added presented similar characteristics, such as a slight reduction in pH and increased acidity, with a greater tendency to present a yellow color compared with the control yogurt. Moreover, they showed less syneresis, the lowest value being that of YHEn, which also showed a slight increase in cohesiveness and greater rheological stability after one week of storage. All yogurts showed high counts of the microorganisms used as starters. The hydrolysate presence in both forms resulted in yogurts with antioxidant activity and potent ACE-inhibitory activity, which were maintained after 7 days of storage. The incorporation of the hydrolysate in the microencapsulated form presented greater advantages than the direct incorporation, since encapsulation masked the fishy flavor of the hydrolysate, resulting in stable and sensorily acceptable yogurts with antioxidant and ACE inhibitory activities.

4.
Mar Biotechnol (NY) ; 23(6): 881-891, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34714442

ABSTRACT

The animals from bycatch of the shrimp fisheries can be a source of natural products and bioactive compounds. Thus, the present study aimed to evaluate the bioactivity of protein hydrolysates prepared from the two most abundant crabs from the bycatch of shrimp fisheries in Brazil (Callinectes ornatus and Hepatus pudibundus). Samples of C. ornatus and H. pudibundus were collected in the region of Ubatuba, State of São Paulo, Brazil. Muscles with small pieces of exoskeleton of both species were hydrolyzed using two enzymes, Alcalase 2.4 L® or Protamex®. The in vitro antioxidant capacity was analyzed used three methods: DPPH, sulfhydryl groups, and peroxyl radicals. Additionally, the cytotoxicity of the hydrolysates was investigated using pre-osteoblasts cells. The results showed that the degree of hydrolysis (DH) of H. pudibundus was superior to DH of C. ornatus using both enzymes and was higher when using the enzyme Alcalase 2.4 L® (32.0% ± 1.9). The analysis suggested that the hydrolysates have antioxidant activity. Besides that, no cytotoxic effect was observed on cell viability. Thus, protein hydrolysates of C. ornatus and H. pudibundus have bioactivity, which add value to these bycatch species and suggests their potential use as nutraceutical ingredient in the food industry.


Subject(s)
Protein Hydrolysates , Seafood , Animals , Antioxidants/pharmacology , Brazil , Fisheries , Hydrolysis , Protein Hydrolysates/chemistry
5.
Food Chem ; 364: 130380, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34167008

ABSTRACT

This study aimed to microencapsulate protein hydrolysates from stripped weakfish (Cynoscion guatucupa) industrial byproducts produced by Alcalase (HA) and Protamex (HP) by spray drying, using maltodextrin as wall material. The physicochemical characteristics, and in vitro antioxidant and Angiotensin-I converting enzyme-inhibitory activities were evaluated during storage. Both microencapsulated hydrolysates showed spherical shape (~3.6 µm particle diameter), low water activity (<0.155) during storage and reduced hygroscopicity (~30%) compared to the free hydrolysate. Infrared spectroscopy evidenced the maltodextrin-hydrolysate interaction. Based on the in vitro results, nematoid C. elegans in L1 larval stage were treated with free and microencapsulated HP, which demonstrated a protective effect on nematoid exposed to oxidative stress (survival ~ 13% control, 77% free HP, and 85% microencapsulated HP) and improved their growth and reproduction rate. Thus, microencapsulation appears to be a good alternative to maintain hydrolysates stability during storage, showing bioactivity in C. elegans.


Subject(s)
Caenorhabditis elegans , Protein Hydrolysates , Animals , Antioxidants , Subtilisins
6.
Food Chem ; 342: 128361, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33077277

ABSTRACT

Shrimp trawling is an important socio-economic activity; however, the bycatch can be problematic to the environment. Thus, the present study investigated potential uses of the bycatch to generate value-added products. The biological activity of the protein hydrolysates obtained from the two most abundant fish species (Micropogonias furnieri and Paralonchurus brasiliensis) was evaluated. Muscle and skin samples of both species were hydrolyzed using two enzymes, Alcalase 2.4 L® or Protamex®. The in vitro antioxidant capacity against peroxyl radicals, DPPH, and sulfhydryl groups were analyzed. Cell viability, Western Blotting, Zymogram, and Real-time PCR analyses were performed. The results showed that the hydrolysates have antioxidant activity and no effect on cell viability at doses lower than 16 mg/mL. In addition, they can modulate extracellular remodelling and intracellular pathways related to cell adhesion. Thus, the hydrolysis of the fish bycatch allows the release of bioactive peptides with potential use in the food industry.


Subject(s)
Antioxidants/pharmacology , Fisheries , Fishes , Protein Hydrolysates/pharmacology , Animals , Antioxidants/metabolism , Fishes/metabolism , Peptides/pharmacology , Protein Hydrolysates/metabolism , Seafood , Subtilisins/metabolism
7.
Food Chem ; 334: 127557, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32712488

ABSTRACT

Previous studies indicate that the bioactive compounds of Eugenia stipitata pulp have antimutagenic, anticarcinogenic and antigenotoxic properties, but its use has been limited due to its high perishability. The aim of this study was to preserve bioactivity by using spray-drying microencapsulation, and is pioneering for its use of DSC to determine the best proportion of wall material (maltodextrin or gum arabic) and drying temperature (100 or 120 °C). The microparticles with maltodextrin (1:9)-100 °C had the best bioactivity conservation after in vitro gastrointestinal digestion, conserving 61% of total polyphenols, and 101%, 85% and 31% of antioxidant capacity according to the ABTS, FRAP and DPPH test methods respectively. These microparticles had a spherical morphology, presented good thermal stability and can be stored at a temperature range from 20 to 40 °C without becoming sticky. Therefore, spray-drying microencapsulation together with DSC is important for preserving a high concentration of bioactive compounds.


Subject(s)
Desiccation/methods , Eugenia/chemistry , Food-Processing Industry/methods , Fruit/chemistry , Air , Antioxidants/chemistry , Antioxidants/isolation & purification , Calorimetry, Differential Scanning , Digestion , Drug Compounding , Gum Arabic/chemistry , Plant Extracts/chemistry , Polyphenols/chemistry , Polyphenols/isolation & purification , Polysaccharides/chemistry
8.
Food Chem ; 343: 128550, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33191008

ABSTRACT

As an alternative, cuticles from edible insects was proposed as an unconventional but viable source of chitin and chitosan. The chitin present in the mealworm's (Tenebrio molitor) cuticles was obtained biotechnologically in one step of enzymatic deproteinization and after deacetylated. Differences in the physicochemical characteristics and the properties of the cuticles, chitin, and chitosan were investigated in this study. Commercial chitosan was used as a reference sample to validate the methods used. The enzymatic deproteinization used to obtain chitin showed an efficiency of 85%. The global yield of the process (cuticle-to-chitosan) was 31.9%. The characterization results of these polymers using DSC, FT-IR, XRD, TGA, and SEM techniques demonstrate consistency with the degree of deacetylation of the obtained chitosan, allowing the differentiation between chitin and chitosan. This study suggests that the wastes of edible insect breeding should be collected and evaluated as an alternative of chitin/chitosan source.


Subject(s)
Chitin/chemistry , Chitosan/chemistry , Coleoptera/metabolism , Animals , Calorimetry, Differential Scanning , Chitin/metabolism , Chitosan/metabolism , Solubility , Spectroscopy, Fourier Transform Infrared , Subtilisins/metabolism , Thermogravimetry
9.
Food Chem ; 311: 126022, 2020 May 01.
Article in English | MEDLINE | ID: mdl-31869637

ABSTRACT

The ingestion of insects has become a new trend in food science approximately since 2013, when the Food and Agriculture Organization of the United Nations (FAO) published a document entitled "Edible Insects: Future Perspectives of Food and Nutrition Security". Since then, a growing number of researches relating insects as a food source has emerged, however, little is known about the composition of their nutrients. This review describes and compares the nutritional composition, functionality and the bioactive compounds present in different insects, as these have been shown to be a source of healthy food with high protein content, significant amount of lipids, vitamins, minerals and fibers, present in the form of chitin in the exoskeleton of the insects. Additionally, the issues related to entomophagy and the possible risks that should be taken into account when consuming insects are discussed.


Subject(s)
Edible Insects , Food Safety , Insect Proteins/analysis , Nutritive Value , Agriculture , Amino Acids/analysis , Animals , Dietary Proteins/analysis , Food Supply , Food Technology , Humans , Insecta/chemistry , Lipids/analysis , Minerals/analysis , Risk , Vitamins/analysis
10.
Int J Biol Macromol ; 155: 1157-1168, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-31726125

ABSTRACT

This work aimed to produce films based on bocaiuva flour (Acrocomia aculeata) by the casting method, and to characterise them. All obtained films were visually symmetrical, without ruptures or blistering and visually homogeneous, easy to handle with a yellowish colouration. The addition of glycerol allowed greater flexibility to the films. The tensile strength and the elongation increase as the concentration of flour increased (2.04 g 100 mL-1). The addition of oily phases increases the elongation, indicating that the essential oil incorporated into the films acted as plasticizer because it also allowed a greater permeability to water vapor. Peaks at 2Ɵ between 10.00°, 13.81°, 17.67°, 20.0° and 24.34° were observed in films with 12.56 g of starch per 100 g of pulp, which are characteristic of B-starch, due to the presence of long branched chains of amylopectin, with a peak characteristic of lignocellulosic materials. Reflection was more intense at 2Ɵ between 22° for all treatments. The obtained films presented relevant characteristics for the application as edible coating.


Subject(s)
Arecaceae/chemistry , Biopolymers/chemistry , Flour/analysis , Glycerol/chemistry , Water/chemistry , Brazil , Permeability , Tensile Strength
11.
Braz. arch. biol. technol ; 63: e20190046, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132244

ABSTRACT

Abstract This research aims to determine the efficiency of chitosan and xanthan gum films in conservation of croaker fillets kept in refrigeration for 9 days. Proximal composition, loss of mass, color, pH, TVB-N (Total Volatile Bases) and microbiological profile were assessed. The films were prepared with chitosan and xanthan gum in varying mass proportions 100:0, m:m (C100XG0); 60:40, m:m (C60XG40); 50:50, m:m (C50XG50). They presented the respective values for moisture content, water solubility, thickness and water vapor permeability: 24.59%, 19.50%, 0.086 mm and 11.45gm-1.s-1.Pa-1for C100XG0; 24.58%; 20.27%, 0.091 mm and 10.41 gm-1.s-1.Pa-1for C60XG40; 22.11%, 22.06%, 0.089 mm and 10.68 gm-1.s-1.Pa-1 forC50XG50.The films were made in small bags format capable to hold about 20 g of fish fillets. A control sample was prepared in parallel, using polyethylene bags under the same storage conditions. The results showed that the chitosan films combined with xanthan gum had excellent antimicrobial properties, capable of preserving the quality of chilled fish fillets during the studied period, since it inhibited the growth of Staphylococcus coagulase-positive, Salmonella spp and coliforms at 45 ° C. Mass loss of the croaker fillets was not significantly affected by xanthan gum addition to the films. On the other hand, xanthan gum addition affected pH and color parameters of the corvina fillets. It was also verified that the combination of these two polymers promoted the reduction of N-BVT, being the C50XG50 film that presented the best response.


Subject(s)
Animals , Xanthomonas/chemistry , Food Packaging/methods , Chitosan/chemistry , Fishes/microbiology , Food Preservation/methods , Polysaccharides, Bacterial/chemistry , Anti-Infective Agents
12.
Mar Biotechnol (NY) ; 20(2): 118-130, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29532335

ABSTRACT

The inadequate management of fish processing waste or by-products is one of the major problems that fish industry has to face nowadays. The mismanagement of this raw material leads to economic loss and environmental problems. The demand for the use of these by-products has led to the development of several processes in order to recover biomolecules from fish by-products. An efficient way to add value to fish waste protein is protein hydrolysis. Protein hydrolysates improve the functional properties and allow the release of peptides of different sizes with several bioactivities such as antioxidant, antimicrobial, antihypertensive, anti-inflammatory, or antihyperglycemic among others. This paper reviews different methods for the production of protein hydrolysates as well as current research about several fish by-products protein hydrolysates bioactive properties, aiming the dual objective: adding value to these underutilized by-products and minimizing their negative impact on the environment.


Subject(s)
Fish Proteins/isolation & purification , Peptides/isolation & purification , Protein Hydrolysates/chemistry , Animals , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antihypertensive Agents/isolation & purification , Antihypertensive Agents/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Fish Proteins/pharmacology , Fishes , Hydrolysis , Industrial Waste , Peptides/pharmacology , Refuse Disposal/methods
13.
Korean J Food Sci Anim Resour ; 37(2): 162-167, 2017.
Article in English | MEDLINE | ID: mdl-28515639

ABSTRACT

Functional and nutritional soluble proteins can be recovered from surimi (and surimi-like material) processing wastewater, reducing environmental problems and the cost of an irresponsible waste disposal. Recovered proteins may be added back at a low percentage to surimi products. The aim of this work was to evaluate the effect of the addition of soluble recovered proteins (RP), obtained from mechanically separated chicken meat surimi-like material (MSCM-SLM) processing wastewater by acidic pH-shifting, on the composition and texture of RP-MSCM-SLM, with RP contents of 0, 10, 20 and 30% (w/w) in the mixture. For that, proximate composition and gel properties were evaluated. The fat content of the MSCM-SLM was significantly reduced to 11.98% and protein increased to 83.64% (dry basis) after three washing cycles. The addition of 30% RP in the MSCM-SLM significantly augmented the protein content to 93.45% and reduced fat content from to 2.78%. On the other hand, the addition of RP was responsible for a drastic decrease in texture parameters, reaching 252.36 g, 185.23 g.cm, and 6.97 N for breaking force, gel strength and cutting strength, respectively, when 30% of RP was included in the MSCM-SLM. It was concluded that the obtained intermediary product (RP-MSCM-SLM) is a good option to applications in processed meat products where high texture parameters are dispensable, e.g., emulsified inlaid frankfurter-type sausages, but high protein content and low fat content desired.

14.
J Food Sci ; 82(3): 698-705, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28218968

ABSTRACT

Films based on chitosan and xanthan gum were prepared using casting technique aiming to investigate the potential of these polymers as packaging materials. Six formulations of films were studied varying the proportion of chitosan and xanthan gum: 100:0 (chitosan:xanthan gum, w/w, C100XG0 film); 90:10 (chitosan:xanthan gum, w/w, C90XG10 film); 80:20 (chitosan:xanthan gum, w/w, C80XG20 film); 70:30 (chitosan:xanthan gum, w/w, C70XG30 film); 60:40 (chitosan:xanthan gum, w/w, C60XG40 film); and 50:50 (chitosan:xanthan gum, w/w, C50XG50 film). The total quantity of solids (chitosan and xanthan gum) in the filmogenic solution was 1.5 g per 100 mL of aqueous solution for all treatments, according to the proportion of each polymer. The films were evaluated by their functional groups, structural, thermal, morphological, physical, mechanical, and barrier properties. All films have presented endothermic peaks in the range of 122 to 175 °C and broad exothermic peaks above 200 °C, which were assigned to the melting temperature and thermal decomposition, respectively. These results demonstrated that films with xanthan gum have the highest Tm and Δm H. The films containing higher content of xanthan gum show also the highest tensile strength and the lowest elongation. Xanthan gum addition did not affect the water vapor permeability, solubility, and moisture of films. This set of data suggests the formation of chitosan-xanthan complexes in the films.


Subject(s)
Chitosan/chemistry , Food Packaging/methods , Polymers/chemistry , Polysaccharides, Bacterial/chemistry , Steam , Temperature , Tensile Strength , Humans , Permeability , Solubility , Water
15.
J Sci Food Agric ; 96(7): 2478-85, 2016 May.
Article in English | MEDLINE | ID: mdl-26250365

ABSTRACT

BACKGROUND: The microstructure and the physical, mechanical, barrier and thermal properties of films based on different concentrations of protein isolated from croaker waste (CPI) and palm oil (PO) were analyzed. Films were elaborated by a casting technique using 2, 3 and 4 g CPI 100 g(-1) of a filmogenic solution and 0, 10 and 20 g of PO 100 g(-1) CPI. RESULT: Microstructure of the film surfaces of CPI with PO showed no presence of lipid droplets dispersed in the filmogenic matrix, although a rough surface was present. Films with 3% and 4% CPI and 20% PO had the lowest rates of water vapor permeability. When there was an addition of PO to the reduced tensile strength of the films, regardless of the concentration of CPI, this addition reduced the elongation of films with 3% and 4% CPI; however, it did not influence films with 2% CPI, which did not differ from the control film (0% OP). Thermal analysis revealed that films with the highest PO percentage had a lower initial weight loss when compared with other films, due to higher hydrophobicity. CONCLUSION: The use of protein isolate obtained from fish residues of low commercial value and palm oil is viable for the production of biodegradable films because the latter constitute good barrier properties and thermal stability. © 2015 Society of Chemical Industry.


Subject(s)
Fish Proteins/chemistry , Fishes/classification , Plant Oils/chemistry , Animals , Food Packaging , Materials Testing , Membranes, Artificial , Microscopy, Electrochemical, Scanning , Palm Oil , Thermogravimetry
16.
Food Sci Technol Int ; 22(6): 461-74, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26683484

ABSTRACT

Growth curves were evaluated for aerobic mesophilic and psychrotrophic bacteria, Pseudomonas spp. and Staphylococcus spp., grown in raw, salted, and cooked chicken breast at 2, 4, 7, 10, 15, and 20 ℃, respectively, using the modified Gompertz and modified logistic models. Shelf life was determined based on microbiological counts and sensory analysis. Temperature increase reduced the shelf life, which varied from 10 to 26 days at 2 ℃, from nine to 21 days at 4 ℃, from six to 12 days at 7 ℃, from four to eight days at 10 ℃, from two to four days at 15 ℃, and from one to two days at 20 ℃. In most cases, cooked chicken breast showed the highest microbial count, followed by raw breast and lastly salted breast. The data obtained here were useful for the generation of mathematical models and parameters. The models presented high correlation and can be used for predictive purposes in the poultry meat supply chain.


Subject(s)
Chickens/microbiology , Cooking/methods , Food Microbiology/methods , Food Storage/methods , Pseudomonas/growth & development , Sodium Chloride , Staphylococcus/growth & development , Animals , Colony Count, Microbial , Food Microbiology/statistics & numerical data , Food Preservation/methods , Food Quality , Humans , Pigments, Biological , Smell , Taste , Temperature
17.
J Food Sci ; 80(6): M1271-6, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25944498

ABSTRACT

This paper presents the development of a new smart time-temperature indicator (TTI) of pasteurization whose operating principle is based on the complexation reaction between starch and iodine, and the subsequent action of an amylase on this complex causing its discoloration at a rate dependent on time and temperature of the medium. Laboratory simulations and tests in a manufacturing plant evaluated different enzyme concentrations in the TTI prototypes when exposed to pasteurization conditions. The results showed that the color response of the indicators was visually interpreted as adaptive to measurement using appropriate equipment, with satisfactory reliability in all conditions studied. The TTI containing 6.5% amylase was one whose best results were suited for use in validating the cooking of hams. When attached to the primary packaging of the product, this TTI indicated the pasteurization process inexpensively, easily, accurately, and nondestructively.


Subject(s)
Amylases/metabolism , Cooking/methods , Food Microbiology/methods , Meat/microbiology , Pasteurization , Temperature , Animals , Color , Food Packaging , Hot Temperature , Humans , Iodine/metabolism , Meat/analysis , Meat Products/analysis , Meat Products/microbiology , Reproducibility of Results , Starch/metabolism , Swine
18.
J Food Sci Technol ; 52(2): 763-72, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25694684

ABSTRACT

Surimi is a semi-processed washed fish mince protein concentrate mixed with cryoprotectants for frozen storage, which is the primary constituent of processed foods. Mechanically separated chicken meat (MSCM) is a common ingredient of comminuted sausages mainly due to its low price. The present work aimed to define the adequate parameters to obtain surimi-like material from MSCM using response surface methodology, and to characterize the chemical and textural properties of this product. The MSCM was utilized in the elaboration of surimi-like material using the bleaching method with sodium bicarbonate and sodium chloride solutions. For this purpose, the effect of process parameters viz: temperature (T = 2, 7, and 12 °C), time (t = 5, 10, and 15 min/cycles) and washing solution:MSCM ratio (R = 2:1, 4:1, and 6:1 w/w) were evaluated using response surface methodology. The highest composite design averages obtained were 10.7 % for protein content, 1,003.4 g for breaking force, 645.8 g.cm for gel strength, 9.0 N for cutting strength, and 24.1 N.s for work of shearing at the optimum combination of processing conditions of 7 °C, 10 min and 4:1 washing solution:MSCM ratio, corresponding to the central points of the proposed experimental design. The obtained models had high determination coefficients, explaining 95.85, 98.23, 98.41, and 96.08 % of total variability in protein content, cutting strength, breaking force, and work of shearing variabilities, respectively. According to the folding test the surimi-like material presented the same characteristics of a high quality surimi (FT = 5).

19.
Braz. arch. biol. technol ; 57(1): 96-102, Jan.-Feb. 2014. graf, tab
Article in English | LILACS | ID: lil-702575

ABSTRACT

A significant amount of insoluble fibrous protein, in the form of feather, hair, scales, skin and others are available as co-products of agro industrial processing. These wastes are rich in keratin and collagen. This study evaluated different fungi for the hydrolysis of insoluble fish protein residues. Proteins resulting from Micropogonias furnieri wastes through pH-shifting process were dried and milled for fermentation for 96 h. This resulted the production of keratinolytic enzymes in the medium. Trichoderma sp. on alkaline substrate (28.99 U mL-1) and Penicillium sp. on acidic substrate (31.20 U mL-1) showed the highest proteolytic activities. Penicillium sp. showed the largest free amino acid solubilization (0.146 mg mL-1) and Fusarium sp. the highest protein solubilization (6.17 mg mL-1).

20.
Appl Biochem Biotechnol ; 172(6): 2877-93, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24449375

ABSTRACT

In this work, chicken and fish peptides were obtained using the proteolytic enzymes α-Chymotrypsin and Flavourzyme. The muscle was hydrolyzed for 4 h, and the resulting peptides were evaluated. Hydrolysates were produced from Argentine croaker (Umbrina canosai) with a degree of hydrolysis (DH) of 25.9 and 27.6% and from chicken (Gallus domesticus) with DH of 17.8 and 20.6% for Flavourzyme and α-Chymotrypsin, respectively. Membrane ultrafiltration was used to separate fish and chicken hydrolysates from Flavourzyme and α-Chymotrypsin based on molecular weight cutoff of >1,000, <1,000 and >500, and <500 Da, to produce fractions (F1,000, F1,000-500, and F500) with antioxidant activity. Fish hydrolysates produced with Flavourzyme (FHF) and α-Chymotrypsin showed 60.8 and 50.9% of peptides with a molecular weight of <3 kDa in its composition, respectively. To chicken hydrolysates produced with Flavourzyme and α-Chymotrypsin (CHC) was observed 83 and 92.4% of peptides with a molecular weight of <3 kDa. The fraction that showed, in general, higher antioxidant potential was F1,000 from FHF. When added 40 mg/mL of FHF and CHC, 93 and 80% of lipid oxidation in ground beef homogenates was inhibited, respectively. The composition of amino acids indicated higher amino acids hydrophobic content and amino acids containing sulfuric residues for FHF, which showed antioxidant potential.


Subject(s)
Antioxidants/chemistry , Fish Proteins/chemistry , Meat , Peptides/chemistry , Animals , Antioxidants/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Cattle , Chemical Fractionation , Chickens , Chymotrypsin/chemistry , Endopeptidases/chemistry , Hydrolysis , Lipid Peroxidation , Membranes, Artificial , Molecular Weight , Peptides/isolation & purification , Perciformes , Picrates/antagonists & inhibitors , Ultrafiltration
SELECTION OF CITATIONS
SEARCH DETAIL
...