Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39071379

ABSTRACT

Bacteria frequently colonize niches by forming multicellular communities called biofilms. To explore new territories, cells exit biofilms through an active process called dispersal. Biofilm dispersal is essential for bacteria to spread between infection sites, yet how the process is executed at the single-cell level remains mysterious. Here, we characterize dispersal at unprecedented resolution for the global pathogen Vibrio cholerae. To do so, we first developed a far-red cell-labeling strategy that overcomes pitfalls of fluorescent protein-based approaches. We reveal that dispersal initiates at the biofilm periphery and ~25% of cells never disperse. We define novel micro-scale patterns that occur during dispersal, including biofilm compression and the formation of dynamic channels. These patterns are attenuated in mutants that reduce overall dispersal or that increase dispersal at the cost of homogenizing local mechanical properties. Collectively, our findings provide fundamental insights into the mechanisms of biofilm dispersal, advancing our understanding of how pathogens disseminate.

2.
Nat Commun ; 15(1): 2018, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38443393

ABSTRACT

Matrix-encapsulated communities of bacteria, called biofilms, are ubiquitous in the environment and are notoriously difficult to eliminate in clinical and industrial settings. Biofilm formation likely evolved as a mechanism to protect resident cells from environmental challenges, yet how bacteria undergo threat assessment to inform biofilm development remains unclear. Here we find that population-level cell lysis events induce the formation of biofilms by surviving Vibrio cholerae cells. Survivors detect threats by sensing a cellular component released through cell lysis, which we identify as norspermidine. Lysis sensing occurs via the MbaA receptor with genus-level specificity, and responsive biofilm cells are shielded from phage infection and attacks from other bacteria. Thus, our work uncovers a connection between bacterial lysis and biofilm formation that may be broadly conserved among microorganisms.


Subject(s)
Bacteriophages , Vibrio cholerae , Biofilms , Cell Aggregation , Cell Death
3.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168155

ABSTRACT

Bacterial cells secrete extracellular vesicles (EVs), the function of which is a matter of intense investigation. Here, we show that the EVs secreted by the human pathogen Streptococcus pneumoniae (pneumococcus) are associated with bacterial DNA on their surface and can deliver this DNA to the transformation machinery of competent cells. These findings suggest that EVs contribute to gene transfer in Gram-positive bacteria, and in doing so, may promote the spread of drug resistance genes in the population.

4.
J Bacteriol ; 204(10): e0024922, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36154360

ABSTRACT

Transitions between individual and communal lifestyles allow bacteria to adapt to changing environments. Bacteria must integrate information encoded in multiple sensory cues to appropriately undertake these transitions. Here, we investigate how two prevalent sensory inputs converge on biofilm morphogenesis: quorum sensing, which endows bacteria with the ability to communicate and coordinate group behaviors, and second messenger c-di-GMP signaling, which allows bacteria to detect and respond to environmental stimuli. We use Vibrio cholerae as our model system, the autoinducer AI-2 to modulate quorum sensing, and the polyamine norspermidine to modulate NspS-MbaA-mediated c-di-GMP production. Individually, AI-2 and norspermidine drive opposing biofilm phenotypes, with AI-2 repressing and norspermidine inducing biofilm formation. Surprisingly, however, when AI-2 and norspermidine are simultaneously detected, they act synergistically to increase biofilm biomass and biofilm cell density. We show that this effect is caused by quorum-sensing-mediated activation of nspS-mbaA expression, which increases the levels of NspS and MbaA, and in turn, c-di-GMP biosynthesis, in response to norspermidine. Increased MbaA-synthesized c-di-GMP activates the VpsR transcription factor, driving elevated expression of genes encoding key biofilm matrix components. Thus, in the context of biofilm morphogenesis in V. cholerae, quorum-sensing regulation of c-di-GMP-metabolizing receptor levels connects changes in cell population density to detection of environmental stimuli. IMPORTANCE The development of multicellular communities, known as biofilms, facilitates beneficial functions of gut microbiome bacteria and makes bacterial pathogens recalcitrant to treatment. Understanding how bacteria regulate the biofilm life cycle is fundamental to biofilm control in industrial processes and in medicine. Here, we demonstrate how two major sensory inputs-quorum-sensing communication and second messenger c-di-GMP signaling-jointly regulate biofilm morphogenesis in the global pathogen Vibrio cholerae. We characterize the mechanism underlying a surprising synergy between quorum-sensing and c-di-GMP signaling in controlling biofilm development. Thus, the work connects changes in cell population density to detection of environmental stimuli in a pathogen of clinical significance.


Subject(s)
Vibrio cholerae , Vibrio cholerae/metabolism , Quorum Sensing/physiology , Cyclic GMP/metabolism , Biofilms , Spermidine/metabolism , Transcription Factors/metabolism , Morphogenesis , Gene Expression Regulation, Bacterial , Bacterial Proteins/metabolism
5.
Annu Rev Microbiol ; 76: 235-257, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35609948

ABSTRACT

Bacteria orchestrate collective behaviors and accomplish feats that would be unsuccessful if carried out by a lone bacterium. Processes undertaken by groups of bacteria include bioluminescence, biofilm formation, virulence factor production, and release of public goods that are shared by the community. Collective behaviors are controlled by signal transduction networks that integrate sensory information and transduce the information internally. Here, we discuss network features and mechanisms that, even in the face of dramatically changing environments, drive precise execution of bacterial group behaviors. We focus on representative quorum-sensing and second-messenger cyclic dimeric GMP (c-di-GMP) signal relays. We highlight ligand specificity versus sensitivity, how small-molecule ligands drive discrimination of kin versus nonkin, signal integration mechanisms, single-input sensory systems versus coincidence detectors, and tuning of input-output dynamics via feedback regulation. We summarize how different features of signal transduction systems allow groups of bacteria to successfully interpret and collectively react to dynamically changing environments.


Subject(s)
Biofilms , Gene Expression Regulation, Bacterial , Bacteria/metabolism , Bacterial Proteins/metabolism , Cyclic GMP , Mass Gatherings , Quorum Sensing/physiology , Signal Transduction
6.
PLoS Biol ; 20(3): e3001585, 2022 03.
Article in English | MEDLINE | ID: mdl-35302986

ABSTRACT

Bacterial biofilms are multicellular communities that collectively overcome environmental threats and clinical treatments. To regulate the biofilm lifecycle, bacteria commonly transduce sensory information via the second messenger molecule cyclic diguanylate (c-di-GMP). Using experimental and modeling approaches, we quantitatively capture c-di-GMP signal transmission via the bifunctional polyamine receptor NspS-MbaA, from ligand binding to output, in the pathogen Vibrio cholerae. Upon binding of norspermidine or spermidine, NspS-MbaA synthesizes or degrades c-di-GMP, respectively, which, in turn, drives alterations specifically to biofilm gene expression. A long-standing question is how output specificity is achieved via c-di-GMP, a diffusible molecule that regulates dozens of effectors. We show that NspS-MbaA signals locally to specific effectors, sensitizing V. cholerae to polyamines. However, local signaling is not required for specificity, as changes to global cytoplasmic c-di-GMP levels can selectively regulate biofilm genes. This work establishes the input-output dynamics underlying c-di-GMP signaling, which could be useful for developing bacterial manipulation strategies.


Subject(s)
Vibrio cholerae , Biofilms , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Signal Transduction , Vibrio cholerae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL