Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 154(6): 1727-1738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582386

ABSTRACT

Although there is growing global momentum behind food systems strategies to improve planetary and human health-including nutrition-there is limited evidence of what types of food systems interventions work. Evaluating these types of interventions is challenging due to their complex and dynamic nature and lack of fit with standard evaluation methods. In this article, we draw on a portfolio of 6 evaluations of food systems interventions in Africa and South Asia that were intended to improve nutrition. We identify key methodological challenges and formulate recommendations to improve the quality of such studies. We highlight 5 challenges: a lack of evidence base to justify the intervention, the dynamic and multifaceted nature of the interventions, addressing attribution, collecting or accessing accurate and timely data, and defining and measuring appropriate outcomes. In addition to more specific guidance, we identify 6 cross-cutting recommendations, including a need to use multiple and diverse methods and flexible designs. We also note that these evaluation challenges present opportunities to develop new methods and highlight several specific needs in this space.


Subject(s)
Food Supply , Program Evaluation , Humans , Africa , Asia , Nutritional Status , Asia, Southern
2.
Cell Rep ; 34(4): 108677, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33503439

ABSTRACT

Pioneering studies from the early 1980s suggested that bacterial peptidoglycan-derived muramyl peptides (MPs) could exert either stimulatory or immunosuppressive functions depending, in part, on chronicity of exposure. However, this Janus-faced property of MPs remains largely unexplored. Here, we demonstrate the immunosuppressive potential of Nod1, the bacterial sensor of diaminopimelic acid (DAP)-containing MPs. Using a model of self-limiting peritonitis, we show that systemic Nod1 activation promotes an autophagy-dependent reprogramming of macrophages toward an alternative phenotype. Moreover, Nod1 stimulation induces the expansion of myeloid-derived suppressor cells (MDSCs) and maintains their immunosuppressive potential via arginase-1 activity. Supporting the role of MDSCs and tumor-associated macrophages in cancer, we demonstrate that myeloid-intrinsic Nod1 expression sustains intra-tumoral arginase-1 levels to foster an immunosuppressive and tumor-permissive microenvironment during colorectal cancer (CRC) development. Our findings support the notion that bacterial products, via Nod1 detection, modulate the immunosuppressive activity of myeloid cells and fuel tumor progression in CRC.


Subject(s)
Colorectal Neoplasms/immunology , Myeloid-Derived Suppressor Cells/immunology , Nod1 Signaling Adaptor Protein/immunology , Animals , Carcinogenesis/immunology , Colorectal Neoplasms/pathology , Female , Humans , Male , Mice , Tumor Microenvironment/immunology
3.
Science ; 365(6448)2019 07 05.
Article in English | MEDLINE | ID: mdl-31273097

ABSTRACT

Multiple cytosolic innate sensors form large signalosomes after activation, but this assembly needs to be tightly regulated to avoid accumulation of misfolded aggregates. We found that the eIF2α kinase heme-regulated inhibitor (HRI) controls NOD1 signalosome folding and activation through a process requiring eukaryotic initiation factor 2α (eIF2α), the transcription factor ATF4, and the heat shock protein HSPB8. The HRI/eIF2α signaling axis was also essential for signaling downstream of the innate immune mediators NOD2, MAVS, and TRIF but dispensable for pathways dependent on MyD88 or STING. Moreover, filament-forming α-synuclein activated HRI-dependent responses, which suggests that the HRI pathway may restrict toxic oligomer formation. We propose that HRI, eIF2α, and HSPB8 define a novel cytosolic unfolded protein response (cUPR) essential for optimal innate immune signaling by large molecular platforms, functionally homologous to the PERK/eIF2α/HSPA5 axis of the endoplasmic reticulum UPR.


Subject(s)
Cytosol/enzymology , Cytosol/immunology , Immunity, Innate , Protein Serine-Threonine Kinases/physiology , Unfolded Protein Response/immunology , Activating Transcription Factor 4/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Cell Line , Endoplasmic Reticulum Chaperone BiP , Eukaryotic Initiation Factor-2/metabolism , Fibroblasts , Heat-Shock Proteins/metabolism , Humans , Listeria/immunology , Membrane Proteins/metabolism , Mice , Mice, Mutant Strains , Molecular Chaperones/metabolism , Myeloid Differentiation Factor 88/metabolism , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Protein Serine-Threonine Kinases/genetics , Salmonella/immunology , Salmonella Infections , Shigella/immunology , Signal Transduction
5.
Nat Med ; 22(5): 524-30, 2016 05.
Article in English | MEDLINE | ID: mdl-27064448

ABSTRACT

Cholera toxin (CT) is a potent adjuvant for inducing mucosal immune responses. However, the mechanism by which CT induces adjuvant activity remains unclear. Here we show that the microbiota is critical for inducing antigen-specific IgG production after intranasal immunization. After mucosal vaccination with CT, both antibiotic-treated and germ-free (GF) mice had reduced amounts of antigen-specific IgG, smaller recall-stimulated cytokine responses, impaired follicular helper T (TFH) cell responses and reduced numbers of plasma cells. Recognition of symbiotic bacteria via the nucleotide-binding oligomerization domain containing 2 (Nod2) sensor in cells that express the integrin CD11c (encoded by Itgax) was required for the adjuvanticity of CT. Reconstitution of GF mice with a Nod2 agonist or monocolonization with Staphylococcus sciuri, which has high Nod2-stimulatory activity, was sufficient to promote robust CT adjuvant activity, whereas bacteria with low Nod2-stimulatory activity did not. Mechanistically, CT enhanced Nod2-mediated cytokine production in dendritic cells via intracellular cyclic AMP. These results show a role for the microbiota and the intracellular receptor Nod2 in promoting the mucosal adjuvant activity of CT.


Subject(s)
Adjuvants, Immunologic/pharmacology , Cholera Toxin/pharmacology , Germ-Free Life/immunology , Immunity, Mucosal/drug effects , Microbiota/drug effects , Nod2 Signaling Adaptor Protein/drug effects , Staphylococcal Infections/immunology , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , CD11c Antigen/metabolism , Cyclic AMP/immunology , Cytokines/immunology , Dendritic Cells/immunology , Enzyme-Linked Immunospot Assay , Flow Cytometry , Immunity, Mucosal/immunology , Mice , Mice, Knockout , Microbiota/immunology , Mucous Membrane/immunology , Nasal Mucosa/immunology , Nod2 Signaling Adaptor Protein/agonists , Nod2 Signaling Adaptor Protein/immunology , Real-Time Polymerase Chain Reaction , Spleen/cytology , Staphylococcus
SELECTION OF CITATIONS
SEARCH DETAIL
...