Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 82019 12 17.
Article in English | MEDLINE | ID: mdl-31843054

ABSTRACT

Quantifying pathogen transmission in multi-host systems is difficult, as exemplified in bovine tuberculosis (bTB) systems, but is crucial for control. The agent of bTB, Mycobacterium bovis, persists in cattle populations worldwide, often where potential wildlife reservoirs exist. However, the relative contribution of different host species to bTB persistence is generally unknown. In Britain, the role of badgers in infection persistence in cattle is highly contentious, despite decades of research and control efforts. We applied Bayesian phylogenetic and machine-learning approaches to bacterial genome data to quantify the roles of badgers and cattle in M. bovis infection dynamics in the presence of data biases. Our results suggest that transmission occurs more frequently from badgers to cattle than vice versa (10.4x in the most likely model) and that within-species transmission occurs at higher rates than between-species transmission for both. If representative, our results suggest that control operations should target both cattle and badgers.


Subject(s)
Genome, Bacterial/genetics , Genomics/methods , Mycobacterium bovis/genetics , Tuberculosis, Bovine/transmission , Animals , Animals, Wild/microbiology , Bayes Theorem , Cattle , Disease Reservoirs/microbiology , Host-Pathogen Interactions , Mustelidae/microbiology , Mycobacterium bovis/classification , Mycobacterium bovis/physiology , Phylogeny , Tuberculosis, Bovine/epidemiology , Tuberculosis, Bovine/microbiology
2.
BMC Vet Res ; 13(1): 268, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28830547

ABSTRACT

BACKGROUND: The patterns of relative species abundance are commonly studied in ecology and epidemiology to provide insights into underlying dynamical processes. Molecular types (MVLA-types) of Mycobacterium bovis, the causal agent of bovine tuberculosis, are now routinely recorded in culture-confirmed bovine tuberculosis cases in Northern Ireland. In this study, we use ecological approaches and simulation modelling to investigate the distribution of relative abundances of MVLA-types and its potential drivers. We explore four biologically plausible hypotheses regarding the processes driving molecular type relative abundances: sampling and speciation; structuring of the pathogen population; historical changes in population size; and transmission heterogeneity (superspreading). RESULTS: Northern Irish herd-level MVLA-type surveillance shows a right-skewed distribution of MVLA-types, with a small number of types present at very high frequencies and the majority of types very rare. We demonstrate that this skew is too extreme to be accounted for by simple neutral ecological processes. Simulation results indicate that the process of MVLA-type speciation and the manner in which the MVLA-typing loci were chosen in Northern Ireland cannot account for the observed skew. Similarly, we find that pathogen population structure, assuming for example a reservoir of infection in a separate host, would drive the relative abundance distribution in the opposite direction to that observed, generating more even abundances of molecular types. However, we find that historical increases in bovine tuberculosis prevalence and/or transmission heterogeneity (superspreading) are both capable of generating the skewed MVLA-type distribution, consistent with findings of previous work examining the distribution of molecular types in human tuberculosis. CONCLUSION: Although the distribution of MVLA-type abundances does not fit classical neutral predictions, our simulations show that increases in pathogen population size and/or superspreading are consistent with the pattern observed, even in the absence of selective pressures acting on the system.


Subject(s)
Mycobacterium bovis/isolation & purification , Tuberculosis, Bovine/microbiology , Animals , Cattle , Computer Simulation , Epidemiological Monitoring/veterinary , Ireland/epidemiology , Molecular Typing , Mycobacterium bovis/classification , Mycobacterium bovis/genetics , Tuberculosis, Bovine/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...