Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 13(11): e0206847, 2018.
Article in English | MEDLINE | ID: mdl-30452448

ABSTRACT

Mineral-associated organic matter is associated with a suite of soil minerals that can confer stability, resulting in the potential for long-term storage of carbon (C). Not all interactions impart the same level of protection, however; evidence is suggesting that C in certain mineral pools is dynamic and vulnerable to disturbance in the decades following harvesting. The objective of this research was to describe and characterize organic matter-mineral interactions through depth in horizons of soils of contrasting stand age. Sequential selective dissolutions representing increasingly stable mineral-associated organic matter pools from water soluble minerals (deionized water), organo-metal complexes (Na-pyrophosphate), poorly-crystalline minerals (HCl hydroxylamine), and crystalline secondary minerals (Na-dithionite HCl)) were carried out for Ae, Bf and BC horizons sampled from a Young and Mature forest site (35 and 110 years post-harvest) in Mooseland, Nova Scotia, Canada. Sequential selective dissolution extracts were analyzed for C, δ13C, iron (Fe) and aluminum (Al). Organo-metal complexes (OMC) were the largest mineral-associated OM pool in all horizons. This pool dominated the C distribution in B horizons (~60-70% of Bf bulk C), with a minor contribution from poorly-crystalline (PCrys), crystalline (Crys) minerals and water soluble (WS) associations. C in OMC and PCrys pools explained the variation in bulk C in horizons through depth at both sites. Twice as much C in OMC pools was measured at the Mature site compared to the Young site in the Bf horizons, supported by higher C:(Fe+Al) ratios. Isotopic analysis indicated that this extraction procedure isolated distinct mineral-associated OM pools. δ13C signatures of pyrophosphate-extracted OMC pools ranged from -27‰ to -28‰, similar to δ13C of bulk C and to plant-derived humic acids and associated biomass. The water soluble phase (mean δ13C = -29 ‰) was up to 2 ‰ more depleted, whereas the δ13C of Crys pools were more enriched in 13C (-13‰ to -16 ‰) compared to bulk soil. The results from this study suggest that association with minerals does not necessarily confer stability: organo-metal pools dominate in podzol horizons through depth, and contribute most to C storage, but are potentially susceptible to destabilization following the physical changes resulting from forest harvesting disturbance.


Subject(s)
Carbon Sequestration , Forests , Minerals/analysis , Organometallic Compounds/analysis , Soil/chemistry , Carbon Isotopes/analysis , Nova Scotia
5.
Appl Microbiol ; 21(2): 335-7, 1971 Feb.
Article in English | MEDLINE | ID: mdl-5544294

ABSTRACT

Over 70% of the samples of fruit, vegetation, and soil obtained in surveys of New York orchards and vineyards were contaminated with heat-resistant molds. The counts generally were low, under one per gram. Byssochlamys fulva was the most common isolate. Other isolates were identified as B. nivea, Paecilomyces varioti, Aspergillus fischeri, A. fischeri var. spinosus, A. fumigatus, Penicillium vermiculatum, and P. ochro-chloron.


Subject(s)
Food Microbiology , Fruit , Fungi/isolation & purification , Hot Temperature , Trees , Ascomycota/isolation & purification , Aspergillus/isolation & purification , Culture Media , Food Contamination , Fungi/growth & development , Mitosporic Fungi/isolation & purification , New York , Penicillium/isolation & purification , Soil Microbiology , Spores/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL