Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 7(1): 304-311, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34958564

ABSTRACT

The selective detection of individual hazardous volatile organic compounds (VOCs) within a mixture is of great importance in industrial contexts due to environmental and health concerns. Achieving this with inexpensive, portable detectors continues to be a significant challenge. Here, a novel thermal separator system coupled with a photoionization detector has been developed, and its ability to selectively detect the VOCs isopropanol and 1-octene from a mixture of the two has been studied. The system includes a nanoporous silica preconcentrator in conjunction with a commercially available photoionization detector (PID). The PID is a broadband total VOC sensor with little selectivity; however, when used in conjunction with our thermal desorption approach, selective VOC detection within a mixture can be achieved. VOCs are adsorbed in the nanoporous silica over a 5 min period at 5 °C before being desorbed by heating at a fixed rate to 70 °C and detected by the PID. Different VOCs desorb at different times/temperatures, and mathematical analysis of the set of PID responses over time enabled the contributions from isopropanol and 1-octene to be separated. The concentrations of each compound individually could be measured in a mixture with limits of detection less than 10 ppbv and linearity errors less than 1%. Demonstration of a separation of a mixture of chemically similar compounds, benzene and o-xylene, is also provided.


Subject(s)
Nanopores , Volatile Organic Compounds , 2-Propanol/analysis , Chromatography, Gas , Silicon Dioxide , Volatile Organic Compounds/analysis
2.
Analyst ; 146(1): 109-117, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33163998

ABSTRACT

Detection and separation of gas-phase volatile organic compounds (VOCs) is of great importance for many applications including air quality monitoring, toxic gas detection and medical diagnostics. A lack of small and low-cost detectors limits the potential applications of VOC gas sensors, especially in the areas of consumer products and the 'Internet of Things'. Most of the commercially available low-cost technologies are either only capable of measuring a single VOC type, or only provide a total VOC concentration, without the ability to provide information on the nature or type of the VOC. We present a new approach for improving the selectivity of VOC detection, based on temporally resolved thermal desorption of VOCs from a nanoporous material, which can be combined with any existing VOC detector. This work uses a nanoporous silica material that adsorbs VOC molecules, which are then thermally desorbed onto a broadband VOC detector. Different VOCs are desorbed at different temperatures depending on their boiling point and affinity to the porous surface. The nanoporous silica is inert; VOC adsorption is proportional to the concentration of VOC in the environment, and is fully reversible. An example of a detection system using a commercial total VOC photoionization detector and a nanoporous silica preconcentrator is demonstrated here for six different VOCs, and shows potential for discrimination between the VOCs.

3.
RSC Adv ; 9(37): 21186-21191, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-35521343

ABSTRACT

The increasing awareness of the harsh environmental and health risks associated with air pollution has placed volatile organic compounds (VOCs) sensor technologies in elevated demand. While the currently available VOC-monitoring technologies are either bulky and expensive, or only capable of measuring a total VOC concentration, the selective detection of VOCs in the gas-phase remains a challenge. To overcome this, a novel method and device based on mid-IR evanescent-wave fiber-optic spectroscopy, which enables enhanced detection of VOCs, is hereby proposed. This is achieved by increasing the number of analyte molecules in the proximity of the evanescent field via capillary condensation inside nano-porous microparticles coated on the fiber surface. The nano-porous structure of the coating allows the VOC analytes to rapidly diffuse into the pores and become concentrated at the surface of the fiber, thereby allowing the utilization of highly sensitive evanescent-wave spectroscopy. To ascertain the effectiveness and performance of the sensor, different VOCs are measured, and the enhanced sensitivity is analyzed using a custom-built gas cell. According to the results presented here, our VOC sensor shows a significantly increased sensitivity compared to that of an uncoated fiber.

SELECTION OF CITATIONS
SEARCH DETAIL
...